首页> 外文期刊>Networking, IEEE/ACM Transactions on >Dynamic Shortest Path Algorithms for Hypergraphs
【24h】

Dynamic Shortest Path Algorithms for Hypergraphs

机译:超图的动态最短路径算法

获取原文
获取原文并翻译 | 示例

摘要

A hypergraph is a set of vertices and a set of nonempty subsets of , called hyperedges. Unlike graphs, hypergraphs can capture higher-order interactions in social and communication networks that go beyond a simple union of pairwise relationships. In this paper, we consider the shortest path problem in hypergraphs. We develop two algorithms for finding and maintaining the shortest hyperpaths in a dynamic network with both weight and topological changes. These two algorithms are the first to address the fully dynamic shortest path problem in a general hypergraph. They complement each other by partitioning the application space based on the nature of the change dynamics and the type of the hypergraph. We analyze the time complexity of the proposed algorithms and perform simulation experiments for random geometric hypergraphs, energy efficient routing in multichannel multiradio networks, and the Enron email data set. The experiment with the Enron email data set illustrates the application of the proposed algorithms in social networks for identifying the most important actor and the latent social relationship based on the closeness centrality metric.
机译:超图是一组顶点和的一组非空子集(称为超边)。与图不同,超图可以捕获社交和通信网络中的高级交互,而不仅仅是成对关系的简单结合。在本文中,我们考虑了超图中的最短路径问题。我们开发了两种算法,以查找和维护具有权重和拓扑变化的动态网络中最短的超路径。这两种算法是第一个解决一般超图中的全动态最短路径问题的算法。它们通过基于变化动态的性质和超图的类型划分应用程序空间来相互补充。我们分析了所提出算法的时间复杂度,并针对随机几何超图,多通道多无线电网络中的节能路由以及Enron电子邮件数据集进行了仿真实验。使用Enron电子邮件数据集进行的实验说明了所提出算法在社交网络中的应用,该算法基于亲密度中心度量来识别最重要的参与者和潜在的社交关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号