首页> 外文期刊>Networking, IEEE/ACM Transactions on >Obfuscation of Sensitive Data for Incremental Release of Network Flows
【24h】

Obfuscation of Sensitive Data for Incremental Release of Network Flows

机译:混淆敏感数据以增量释放网络流

获取原文
获取原文并翻译 | 示例

摘要

Large datasets of real network flows acquired from the Internet are an invaluable resource for the research community. Applications include network modeling and simulation, identification of security attacks, and validation of research results. Unfortunately, network flows carry extremely sensitive information, and this discourages the publication of those datasets. Indeed, existing techniques for network flow sanitization are vulnerable to different kinds of attacks, and solutions proposed for microdata anonymity cannot be directly applied to network traces. In our previous research, we proposed an obfuscation technique for network flows, providing formal confidentiality guarantees under realistic assumptions about the adversary's knowledge. In this paper, we identify the threats posed by the incremental release of network flows, we propose a novel defense algorithm, and we formally prove the achieved confidentiality guarantees. An extensive experimental evaluation of the algorithm for incremental obfuscation, carried out with billions of real Internet flows, shows that our obfuscation technique preserves the utility of flows for network traffic analysis.
机译:从Internet获得的真实网络流量的大型数据集对于研究社区而言是无价的资源。应用程序包括网络建模和仿真,安全攻击的识别以及研究结果的验证。不幸的是,网络流携带极其敏感的信息,这阻碍了这些数据集的发布。确实,用于网络流清理的现有技术容易受到不同类型的攻击,并且针对微数据匿名性提出的解决方案无法直接应用于网络跟踪。在我们以前的研究中,我们提出了一种对网络流进行混淆的技术,在对对手的知识的现实假设下提供了正式的机密性保证。在本文中,我们确定了网络流量增量释放带来的威胁,提出了一种新颖的防御算法,并正式证明了所实现的机密性保证。对数十亿真实互联网流量进行的增量混淆算法的广泛实验评估表明,我们的混淆技术保留了流量用于网络流量分析的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号