首页> 外文期刊>IEEE/ACM Transactions on Networking >WAIPO: A Fusion-Based Collaborative Indoor Localization System on Smartphones
【24h】

WAIPO: A Fusion-Based Collaborative Indoor Localization System on Smartphones

机译:WAIPO:智能手机上基于融合的协作式室内本地化系统

获取原文
获取原文并翻译 | 示例

摘要

Indoor localization based on smartphone can enhance user’s experiences in indoor environments. Although some innovative solutions have been proposed in the past two decades, how to accurately and efficiently localize users in indoor environments is still a challenging problem. Traditional indoor positioning systems based on Wi-Fi fingerprints or dead reckoning suffer from the variation of Wi-Fi signals and the drift of dead reckoning problems, respectively. Crowdsourcing and ambient sensing stimulate new ways to improve existing localization systems’ accuracy. Using human social factors to calibrate the accuracy of localization is practical and awarding. In this paper, we propose WAIPO, a collaborative indoor localization system with the fusion of Wi-Fi and magnetic fingerprints, image-matching, and people co-occurrence. Specifically, we could obtain the most likely top- locations based on Wi-Fi fingerprints. We utilize the statistics of users’ historical locations known by image-matching, for which we propose a photo-room matching algorithm, to reduce estimating areas. In order to further improve the accuracy of localization, we propose a co-occurrence and non-co-occurrence detection algorithm to detect users’ spatial-temporal co-occurrence and determine users’ locations with magnetic calibration. We have fully implemented WAIPO on the Android platform and perform testbed experiments. The experimental results demonstrate that WAIPO achieves an accuracy of 87.3% on average, which outperforms the state-of-the-art indoor localization systems.
机译:基于智能手机的室内本地化可以增强用户在室内环境中的体验。尽管在过去的二十年中提出了一些创新的解决方案,但是如何在室内环境中准确有效地定位用户仍然是一个具有挑战性的问题。基于Wi-Fi指纹或航位推算的传统室内定位系统分别遭受Wi-Fi信号的变化和航位推算问题的影响。众包和环境感知刺激了提高现有本地化系统准确性的新方法。利用人类社会因素来校准本地化的准确性是很实际的,也是值得的。在本文中,我们提出了WAIPO,这是一种协作的室内定位系统,具有Wi-Fi和磁性指纹的融合,图像匹配和人同时存在。具体来说,我们可以根据Wi-Fi指纹获得最可能的顶部位置。我们利用图像匹配已知的用户历史位置的统计信息,为此我们提出了一个照片室匹配算法,以减少估计面积。为了进一步提高定位精度,我们提出了一种共现和非共现检测算法,以检测用户的时空共现并通过磁标确定用户的位置。我们已在Android平台上完全实现WAIPO并执行了测试平台实验。实验结果表明,WAIPO的平均准确度达到87.3%,优于最先进的室内定位系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号