首页> 外文期刊>Networking, IEEE/ACM Transactions on >Online Auctions in IaaS Clouds: Welfare and Profit Maximization With Server Costs
【24h】

Online Auctions in IaaS Clouds: Welfare and Profit Maximization With Server Costs

机译:IaaS云中的在线拍卖:借助服务器成本实现福利和利润最大化

获取原文
获取原文并翻译 | 示例

摘要

Auction design has recently been studied for dynamic resource bundling and virtual machine (VM) provisioning in IaaS clouds, but is mostly restricted to one-shot or offline setting. This paper targets a more realistic case of online VM auction design, where: 1) cloud users bid for resources into the future to assemble customized VMs with desired occupation durations, possibly located in different data centers; 2) the cloud provider dynamically packs multiple types of resources on heterogeneous physical machines (servers) into the requested VMs; 3) the operational costs of servers are considered in resource allocation; and 4) both social welfare and the cloud provider’s net profit are to be maximized over the system running span. We design truthful, polynomial time auctions to achieve social welfare maximization and/or the provider’s profit maximization with good competitive ratios. Our mechanisms consist of two main modules: 1) an online primal-dual optimization framework for VM allocation to maximize the social welfare with server costs, and for revealing the payments through the dual variables to guarantee truthfulness and 2) a randomized reduction algorithm to convert the social welfare maximizing auctions to ones that provide a maximal expected profit for the provider, with competitive ratios comparable to those for social welfare. We adopt a new application of Fenchel duality in our primal-dual framework, which provides richer structures for convex programs than the commonly used Lagrangian duality, and our optimization framework is general and expressive enough to handle various convex server cost functions. The efficacy of the online auctions is validated through careful theoretical analysis and trace-driven simulation studies.
机译:最近对拍卖设计进行了研究,以在IaaS云中进行动态资源捆绑和虚拟机(VM)设置,但主要限于单次设置或脱机设置。本文针对一个更现实的在线VM拍卖设计案例,其中:1)云用户竞标未来资源,以组装具有所需占用时间的定制VM,这些VM可能位于不同的数据中心; 2)云提供商将异构物理机(服务器)上的多种资源动态打包到请求的VM中; 3)在资源分配中考虑服务器的运营成本;和4)社会福利和云提供商的净利润都应在系统运行范围内最大化。我们设计真实,多项式的时间拍卖,以实现社会福利最大化和/或提供商的利润率最大化以及良好的竞争率。我们的机制包括两个主要模块:1)在线虚拟对偶优化框架,用于VM分配以最大化服务器成本的社会福利,并通过对偶变量显示付款以保证真实性; 2)随机归约算法转换社会福利使拍卖最大化,从而为提供者提供最大的预期利润,其竞争比率可与社会福利相媲美。我们在原始对偶框架中采用了Fenchel对偶的新应用,它比通常使用的拉格朗日对偶提供了更丰富的凸程序结构,并且我们的优化框架具有通用性和表现力,可以处理各种凸服务器成本函数。通过仔细的理论分析和跟踪驱动的模拟研究,可以验证在线拍卖的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号