首页> 外文期刊>IEEE/ACM Transactions on Networking >CoEdge: Cooperative DNN Inference With Adaptive Workload Partitioning Over Heterogeneous Edge Devices
【24h】

CoEdge: Cooperative DNN Inference With Adaptive Workload Partitioning Over Heterogeneous Edge Devices

机译:CODEDE:合作DNN推断,具有在异构边缘设备上的自适应工作负载分区

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in artificial intelligence have driven increasing intelligent applications at the network edge, such as smart home, smart factory, and smart city. To deploy computationally intensive Deep Neural Networks (DNNs) on resource-constrained edge devices, traditional approaches have relied on either offloading workload to the remote cloud or optimizing computation at the end device locally. However, the cloud-assisted approaches suffer from the unreliable and delay-significant wide-area network, and the local computing approaches are limited by the constrained computing capability. Towards high-performance edge intelligence, the cooperative execution mechanism offers a new paradigm, which has attracted growing research interest recently. In this paper, we propose CoEdge, a distributed DNN computing system that orchestrates cooperative DNN inference over heterogeneous edge devices. CoEdge utilizes available computation and communication resources at the edge and dynamically partitions the DNN inference workload adaptive to devices' computing capabilities and network conditions. Experimental evaluations based on a realistic prototype show that CoEdge outperforms status-quo approaches in saving energy with close inference latency, achieving up to 25.5% similar to 66.9% energy reduction for four widely-adopted CNN models.
机译:人工智能最近的进步已经驱动了网络边缘的智能应用,例如智能家居,智能工厂和智能城市。要在资源受限的边缘设备上部署计算密集的深度神经网络(DNN),传统方法依赖于将工作负载依赖于远程云或在本地的最终设备上优化计算。然而,云辅助方法遭受不可靠和延迟的广域网,并且局部计算方法受约束的计算能力的限制。为了高性能优势智能,合作执行机制提供了一种新的范式,最近吸引了越来越多的研究兴趣。在本文中,我们提出了一个分布式DNN计算系统,该系统在异构边缘设备上核对协作DNN推断。 Codede利用边缘的可用计算和通信资源,并动态地将DNN推理工作负载自适应分区为设备的计算能力和网络条件。基于现实原型的实验评估表明,CODEDE优越地现状 - QUOP趋势,近距离推断延迟的能量,可实现高达25.5%,相对于四种广泛采用的CNN型号的能量减少66.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号