首页> 外文期刊>IEEE/ACM Transactions on Networking >Advising Big Data Transfer Over Dedicated Connections Based on Profiling Optimization
【24h】

Advising Big Data Transfer Over Dedicated Connections Based on Profiling Optimization

机译:为基于配置优化的专用连接上的大数据传输提供建议

获取原文
获取原文并翻译 | 示例

摘要

Big data transfer in next-generation scientific applications is now commonly carried out over dedicated channels in high-performance networks (HPNs), where transport protocols play a critical role in maximizing application-level throughput. Optimizing the performance of these protocols is challenging: i) transport protocols perform differently in various network environments, and the protocol choice is not straightforward; ii) even for a given protocol in a given environment, different parameter settings of the protocol may lead to significantly different performance and oftentimes the default setting does not yield the best performance. However, it is prohibitively time-consuming to conduct exhaustive transport profiling due to the large parameter space. In this paper, we propose a PRofiling Optimization Based DAta Transfer Advisor (ProbData) to help end users determine the most effective transport method with the most appropriate parameter settings to achieve satisfactory performance for big data transfer over dedicated connections in HPNs. ProbData employs a fast profiling scheme based on the Simultaneous Perturbation Stochastic Approximation algorithm, namely, FastProf, to accelerate the exploration of the optimal operational zones of various transport methods to improve profiling efficiency. We first present a theoretical background of the optimized profiling approach in ProbData and then detail its design and implementation. The advising procedure and performance benefits of FastProf and ProbData are illustrated and evaluated by both extensive emulations based on real-life performance measurements and experiments over various physical connections in existing production HPNs.
机译:现在,下一代科学应用程序中的大数据传输通常是在高性能网络(HPN)中的专用通道上进行的,其中传输协议在最大限度地提高应用程序级吞吐量方面起着至关重要的作用。优化这些协议的性能具有挑战性:i)传输协议在各种网络环境中的执行情况都不同,并且协议选择并不简单; ii)即使对于给定环境中的给定协议,协议的不同参数设置也可能导致显着不同的性能,并且通常默认设置不会产生最佳性能。但是,由于参数空间大,进行详尽的传输概要分析非常耗时。在本文中,我们提出了一种基于PRofiling优化的DAta传输顾问(ProbData),以帮助最终用户通过最合适的参数设置确定最有效的传输方法,以实现在HPN中通过专用连接进行大数据传输的令人满意的性能。 ProbData采用基于同时扰动随机逼近算法FastProf的快速配置方案,以加速探索各种传输方法的最佳操作区域,以提高配置效率。我们首先介绍ProbData中优化配置方法的理论背景,然后详细介绍其设计和实现。 FastProf和ProbData的建议程序和性能优势通过基于真实性能测量的广泛仿真和对现有生产HPN中各种物理连接的实验进行了说明和评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号