首页> 外文期刊>IEEE/ACM Transactions on Networking >Energy-Efficient Dynamic Virtual Machine Management in Data Centers
【24h】

Energy-Efficient Dynamic Virtual Machine Management in Data Centers

机译:数据中心中的节能动态虚拟机管理

获取原文
获取原文并翻译 | 示例

摘要

Efficient virtual machine (VM) management can dramatically reduce energy consumption in data centers. Existing VM management algorithms fall into two categories based on whether the VMs' resource demands are assumed to be static or dynamic. The former category fails to maximize the resource utilization as they cannot adapt to the dynamic nature of VMs' resource demands. Most approaches in the latter category are heuristic and lack theoretical performance guarantees. In this paper, we formulate the dynamic VM management as a large-scale Markov decision process (MDP) problem and derive an optimal solution. Our analysis of real-world data traces supports our choice of the modeling approach. However, solving the large-scale MDP problem suffers from the curse of dimensionality. Therefore, we further exploit the special structure of the problem and propose an approximate MDP-based dynamic VM management method, called MadVM. We prove the convergence of MadVM and analyze the bound of its approximation error. Moreover, we show that MadVM can be implemented in a distributed system with at most two times of the optimal migration cost. Extensive simulations based on two real-world workload traces show that MadVM achieves significant performance gains over two existing baseline approaches in power consumption, resource shortage, and the number of VM migrations. Specifically, the more intensely the resource demands fluctuate, the more MadVM outperforms.
机译:高效的虚拟机(VM)管理可以大大降低数据中心的能耗。根据虚拟机的资源需求是静态的还是动态的,现有的虚拟机管理算法分为两类。前一类无法最大限度地利用资源,因为它们无法适应VM资源需求的动态特性。后一类中的大多数方法都是启发式的,缺乏理论上的性能保证。在本文中,我们将动态虚拟机管理公式化为一个大规模的马尔可夫决策过程(MDP)问题,并得出了一个最佳解决方案。我们对真实数据轨迹的分析支持我们对建模方法的选择。然而,解决大规模MDP问题遭受了维度的诅咒。因此,我们进一步利用问题的特殊结构,提出了一种近似的基于MDP的动态VM管理方法,称为MadVM。我们证明了MadVM的收敛性,并分析了其逼近误差的范围。此外,我们表明,MadVM可以在分布式系统中实现,最多是最佳迁移成本的两倍。基于两个实际工作负载轨迹的广泛仿真显示,MadVM在功耗,资源短缺和VM迁移数量方面比两种现有的基准方法均获得了显着的性能提升。具体而言,资源需求波动越剧烈,MadVM的表现就越出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号