首页> 外文期刊>Expert Systems with Application >An Ant Colony System for energy-efficient dynamic Virtual Machine Placement in data centers
【24h】

An Ant Colony System for energy-efficient dynamic Virtual Machine Placement in data centers

机译:用于数据中心节能动态虚拟机安放的蚁群系统

获取原文
获取原文并翻译 | 示例

摘要

Data centers are fundamental infrastructure for information technology and cloud services; however, their very high rates of energy consumption are a problem. The placement of Virtual Machines (VMs) to Physical Machines (PMs) in virtualized environments has a significant impact on the energy consumption of a data center. This is an NP-hard problem, for which an optimal solution is not practicable even for a small-scale data center. In this paper, we formulate placement of VMs to PMs in a data center as a constrained combinatorial optimization problem and make use of the information from PM and VM profiles to minimize the total energy consumption of all active PMs. An Ant Colony System (ACS) embedded with new heuristics is presented for an energy-efficient solution to the optimization problem. To demonstrate the effectiveness of the ACS, simulation experiments are conducted on small-, medium- and large-scale data centers. The results from our ACS are compared with two existing ACS methods as well as the widely used First-Fit-Decreasing (FFD) algorithm. Our ACS is shown to outperform the two existing ACS methods and FFD in energy performance for all small-, medium- and large-scale test problems. Our ACS also exhibits good scalability with the increase in the problem size. (C) 2018 Elsevier Ltd. All rights reserved.
机译:数据中心是信息技术和云服务的基本基础架构;但是,它们很高的能耗率是一个问题。在虚拟化环境中将虚拟机(VM)放置到物理机(PM)会对数据中心的能耗产生重大影响。这是一个NP难题,即使对于小型数据中心,最佳解决方案也不可行。在本文中,我们将VM放置在数据中心中的PM上作为约束组合优化问题,并利用PM和VM配置文件中的信息来最大程度地减少所有活动PM的总能耗。提出了一种嵌入了新启发式算法的蚁群系统(ACS),可以为优化问题提供节能解决方案。为了证明ACS的有效性,在小型,中型和大型数据中心上进行了仿真实验。我们将ACS的结果与两种现有的ACS方法以及广泛使用的First-Fit-Decreasing(FFD)算法进行了比较。我们的ACS在所有小型,中型和大型测试问题的能源性能方面均优于现有的ACS方法和FFD。随着问题规模的增加,我们的ACS还具有良好的可扩展性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号