首页> 外文期刊>IEEE/ACM Transactions on Networking >Identifying and Estimating Persistent Items in Data Streams
【24h】

Identifying and Estimating Persistent Items in Data Streams

机译:识别和估计数据流中的持久项

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the fundamental problem of finding persistent items and estimating the number of times each persistent item occurred in a given data stream during a given period of time at any given observation point. We propose a novel scheme, PIE, that can not only accurately identify each persistent item with a probability greater than any desired false negative rate (FNR), but can also accurately estimate the number of occurrences of each persistent item. The key idea of PIE is that it uses Raptor codes to encode the ID of each item that appears at the observation point during a measurement period and stores only a few bits of the encoded ID in the memory. The item that is persistent occurs in enough measurement periods that enough encoded bits for the ID can be retrieved from the observation point to decode them correctly and get the ID of the persistent item. To estimate the number of occurrences of any given persistent item, PIE uses maximum likelihood estimation-based statistical techniques on the information already recorded during the measurement periods. We implemented and evaluated PIE using three real network traffic traces and compared its performance with three prior schemes. Our results show that PIE not only achieves the desire FNR in every scenario, its average FNR can be 19.5 times smaller than the FNR of the adapted prior scheme. Our results also show that PIE achieves any desired success probability in estimating the number of occurrences of persistent items.
机译:本文解决了一个基本问题,即找到持久项并估计每个持久项在给定时间段内在任何给定观察点在给定数据流中出现的次数。我们提出了一种新颖的方案PIE,该方案不仅可以以大于任何期望的假阴性率(FNR)的概率准确地识别每个持久性项目,而且可以准确地估计每个持久性项目的出现次数。 PIE的关键思想是,它使用Raptor码对在测量期间出现在观察点的每个项目的ID进行编码,并且仅将编码后的ID的几位存储在内存中。持久项发生在足够的测量周期内,因此可以从观察点检索到ID的足够编码位,以正确解码它们并获取持久项的ID。为了估计任何给定的持久性项目的出现次数,PIE对测量期间已记录的信息使用基于最大似然估计的统计技术。我们使用三个真实的网络流量跟踪来实现和评估PIE,并将其性能与三个先前的方案进行比较。我们的结果表明,PIE不仅可以在每种情况下都实现所需的FNR,而且其平均FNR可以比经过调整的现有方案的FNR小19.5倍。我们的结果还表明,在估计持久性项目的出现次数时,PIE可以达到任何期望的成功概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号