首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Cascaded Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction
【24h】

Cascaded Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction

机译:级联双向递归神经网络用于蛋白质二级结构预测

获取原文
获取原文并翻译 | 示例

摘要

Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri''''s BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri''''s BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.
机译:蛋白质二级结构(PSS)预测是生物信息学中的重要主题。我们对大量非同源蛋白质的研究表明,通常存在长距离相互作用,并且会对PSS预测产生负面影响。此外,我们还揭示了二级结构(SS)元素之间的强相关性。为了考虑到远程交互作用和SS-SS相关性,我们提出了一种基于级联双向递归神经网络(BRNN)的新型预测系统。我们将级联的BRNN与另外两种BRNN架构进行了比较,即用于语音识别的原始BRNN架构以及为PSS预测提出的Pollastri的BRNN。我们的级联BRNN的整体三态精度Q3为74.38%,并达到了66.0455的高分段OVerlap(SOV)。在第3季度和第2季度,其性能均优于原始的BRNN和Pollastri的BRNN。具体而言,它将SOV分数提高了4-6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号