首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Mixed Integer Linear Programming for Maximum-Parsimony Phylogeny Inference
【24h】

Mixed Integer Linear Programming for Maximum-Parsimony Phylogeny Inference

机译:最大简约系统发生论的混合整数线性规划

获取原文
获取原文并翻译 | 示例

摘要

Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.
机译:系统树的重建是计算生物学中的一个基本问题。尽管出色的启发式方法可用于解决此问题的许多变体,但如果我们要能够继续有效利用目前正在收集的迅速增长的变体数据存储,就需要在系统发育推断方面取得新进展。在本文中,我们提出了两种整数线性规划(ILP)公式,以从一组二进制变异数据中找到最简约的系统树。一种方法使用基于流的公式化,在最坏的情况下,它可以产生指数数量的变量和约束。但是,该方法在实践中已证明在数据集上极为有效,而这些数据集远远超出了可用的有效方法所能提供的范围,可以在几秒钟内解决多个大型mtDNA和Y染色体实例,并在与快速启发式方法竞争的时间内提供可证明的最佳结果比不能保证最优。一种替代公式确定了可以使用多项式大小的ILP解决该问题。我们进一步介绍了基于指数大小的ILP开发的Web服务器,该服务器执行快速的最大简约推断,并充当跨人类基因组的预先计算系统发育数据库的前端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号