首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Mixed Integer Linear Programming for Maximum-Parsimony Phylogeny Inference
【24h】

Mixed Integer Linear Programming for Maximum-Parsimony Phylogeny Inference

机译:混合整数线性规划,用于最大限度分析的系统发育推理

获取原文
获取原文并翻译 | 示例

摘要

Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.
机译:系统发育树的重建是计算生物学的根本问题。虽然出于此问题的许多变体的优异启发式方法,但如果我们能够继续利用现在收集的变异数据的快速增长商店,则需要进行系统发生的新进展。在本文中,我们介绍了两个整数线性编程(ILP)制剂,以从一组二进制变化数据找到最令人垂涎​​的系统发育树。一种方法使用基于流的制剂,其可以在最坏情况下产生指数数量的变量和约束。然而,该方法在实践中证明了远远超出可用可释放的有效方法的进程,在几秒钟内解决了几种大型MTDNA和Y-染色体实例,并在竞争力的快速度竞争时提供可释放的最佳结果而不是保证最优性。另一种制剂确定问题可以用多项式的ILP解决问题。我们进一步提出了一种基于指数尺寸的ILP开发的Web服务器,该ILP执行快速最大定义推论,并用作跨越人类基因组的预先计算的文学数据库的前端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号