首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >An Evaluation of Information Content as a Metric for the Inference of Putative Conserved Noncoding Regions in DNA Sequences Using a Genetic Algorithms Approach
【24h】

An Evaluation of Information Content as a Metric for the Inference of Putative Conserved Noncoding Regions in DNA Sequences Using a Genetic Algorithms Approach

机译:使用遗传算法评估信息含量,作为推断DNA序列中保守非编码区的指标

获取原文
获取原文并翻译 | 示例

摘要

In previous work, we presented GAMI [1], an approach to motif inference that uses a genetic algorithms search. GAMI is designed specifically to find putative conserved regulatory motifs in noncoding regions of divergent species, and is designed to allow for analysis of long nucleotide sequences. In this work, we compare GAMI''s performance when run with its original fitness function (a simple count of the number of matches) and when run with information content, as well as several variations on these metrics. Results indicate that information content does not identify highly conserved regions, and thus is not the appropriate metric for this task, while variations on information content as well as the original metric succeed in identifying putative conserved regions.
机译:在先前的工作中,我们介绍了GAMI [1],这是一种使用遗传算法搜索的主题推断方法。 GAMI专门设计用于在不同物种的非编码区中找到假定的保守调控基序,并设计用于分析长核苷酸序列。在这项工作中,我们将GAMI的性能与原始健身功能(匹配次数的简单计数)一起运行,与信息内容一起运行以及这些指标的几种变体进行比较。结果表明,信息内容不能识别高度保守的区域,因此不是此任务的合适度量,而信息内容的变化以及原始度量成功地识别了假定的保守区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号