首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >High Performance Hybrid Functional Petri Net Simulations of Biological Pathway Models on CUDA
【24h】

High Performance Hybrid Functional Petri Net Simulations of Biological Pathway Models on CUDA

机译:CUDA生物通路模型的高性能混合功能Petri网仿真

获取原文
获取原文并翻译 | 示例

摘要

Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7{times} for a model containing 1,600 cells.
机译:混合功能Petri网是用于表示和模拟生物学模型的广泛工具。由于其具有提供虚拟药物测试环境的潜力,因此生物学模拟对药物研究的影响越来越大。生物学和医学领域的持续研究进展导致仿真时间成倍增加,从而通过高效且廉价的并行计算解决方案提高了对性能加速的需求。图形处理单元(GPGPU)上通用计算领域的最新发展使科学界能够将各种计算密集型算法移植到图形处理单元(GPU)上。这项工作提出了将生物混合功能Petri网模型(可以处理离散实体和连续实体)映射到支持计算统一设备架构(CUDA)的GPU的第一个方案。据观察,GPU加速仿真的运行速度比顺序实现快18倍。在启用CUDA的GPU上通过Delta-Notch信号来模拟细胞边界形成,对于包含1,600个细胞的模型,其加速速度约为7倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号