首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Using Kernel Alignment to Select Features of Molecular Descriptors in a QSAR Study
【24h】

Using Kernel Alignment to Select Features of Molecular Descriptors in a QSAR Study

机译:在QSAR研究中使用核比对选择分子描述符的特征

获取原文
获取原文并翻译 | 示例

摘要

Quantitative structure-activity relationships (QSARs) correlate biological activities of chemical compounds with their physicochemical descriptors. By modeling the observed relationship seen between molecular descriptors and their corresponding biological activities, we may predict the behavior of other molecules with similar descriptors. In QSAR studies, it has been shown that the quality of the prediction model strongly depends on the selected features within molecular descriptors. Thus, methods capable of automatic selection of relevant features are very desirable. In this paper, we present a new feature selection algorithm for a QSAR study based on kernel alignment which has been used as a measure of similarity between two kernel functions. In our algorithm, we deploy kernel alignment as an evaluation tool, using recursive feature elimination to compute a molecular descriptor containing the most important features needed for a classification application. Empirical results show that the algorithm works well for the computation of descriptors for various applications involving different QSAR data sets. The prediction accuracies are substantially increased and are comparable to those from earlier studies.
机译:定量构效关系(QSAR)将化合物的生物活性与其理化描述符关联起来。通过对观察到的分子描述符与其相应的生物学活性之间的关系进行建模,我们可以预测具有相似描述符的其他分子的行为。在QSAR研究中,已经表明预测模型的质量很大程度上取决于分子描述符中所选的特征。因此,非常需要能够自动选择相关特征的方法。在本文中,我们提出了一种基于核对齐的用于QSAR研究的新特征选择算法,该算法已被用作两个核函数之间相似度的度量。在我们的算法中,我们使用内核比对作为评估工具,使用递归特征消除来计算包含描述应用程序所需的最重要特征的分子描述符。实验结果表明,该算法对于涉及不同QSAR数据集的各种应用的描述符计算非常有效。预测准确性大大提高,可以与早期研究的结果相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号