首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >SC³: Triple Spectral Clustering-Based Consensus Clustering Framework for Class Discovery from Cancer Gene Expression Profiles
【24h】

SC³: Triple Spectral Clustering-Based Consensus Clustering Framework for Class Discovery from Cancer Gene Expression Profiles

机译:SC³:基于三光谱聚类的共识聚类框架,用于从癌症基因表达谱中发现类别

获取原文
获取原文并翻译 | 示例

摘要

In order to perform successful diagnosis and treatment of cancer, discovering, and classifying cancer types correctly is essential. One of the challenging properties of class discovery from cancer data sets is that cancer gene expression profiles not only include a large number of genes, but also contains a lot of noisy genes. In order to reduce the effect of noisy genes in cancer gene expression profiles, we propose two new consensus clustering frameworks, named as triple spectral clustering-based consensus clustering (SC^{3}) and double spectral clustering-based consensus clustering (SC^{2}Ncut) in this paper, for cancer discovery from gene expression profiles. SC^{3} integrates the spectral clustering (SC) algorithm multiple times into the ensemble framework to process gene expression profiles. Specifically, spectral clustering is applied to perform clustering on the gene dimension and the cancer sample dimension, and also used as the consensus function to partition the consensus matrix constructed from multiple clustering solutions. Compared with SC^{3}, SC^{2}Ncut adopts the normalized cut algorithm, instead of spectral clustering, as the consensus function. Experiments on both synthetic data sets and real cancer gene expression profiles illustrate that the proposed approaches not only achieve good performance on gene expression profiles, but also outperforms most of the existing approaches in the process of class discovery from these profiles.
机译:为了成功进行癌症的诊断和治疗,正确发现和分类癌症类型至关重要。来自癌症数据集的分类发现具有挑战性的特性之一是,癌症基因表达谱不仅包括大量基因,而且还包含许多嘈杂的基因。为了减少嘈杂基因对癌症基因表达谱的影响,我们提出了两个新的共识聚类框架,分别称为基于三谱聚类的共识聚类(SC ^ {3})和基于双谱聚类的共识聚类(SC ^ {2} Ncut),用于从基因表达谱中发现癌症。 SC ^ {3}将光谱聚类(SC)算法多次集成到集成框架中,以处理基因表达谱。具体地,光谱聚类被应用于在基因维度和癌症样本维度上执行聚类,并且还被用作共识函数来划分由多个聚类解决方案构建的共识矩阵。与SC ^ {3}相比,SC ^ {2} Ncut采用归一化cut算法代替频谱聚类作为共识函数。在合成数据集和真实癌症基因表达谱上的实验表明,所提出的方法不仅在基因表达谱上实现了良好的性能,而且在从这些谱中发现类的过程中也胜过大多数现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号