首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >The LASSO and Sparse Least Squares Regression Methods for SNP Selection in Predicting Quantitative Traits
【24h】

The LASSO and Sparse Least Squares Regression Methods for SNP Selection in Predicting Quantitative Traits

机译:用于预测数量性状的LASSO和稀疏最小二乘回归方法用于SNP选择

获取原文
获取原文并翻译 | 示例

摘要

Recent work concerning quantitative traits of interest has focused on selecting a small subset of single nucleotide polymorphisms (SNPs) from among the SNPs responsible for the phenotypic variation of the trait. When considered as covariates, the large number of variables (SNPs) and their association with those in close proximity pose challenges for variable selection. The features of sparsity and shrinkage of regression coefficients of the least absolute shrinkage and selection operator (LASSO) method appear attractive for SNP selection. Sparse partial least squares (SPLS) is also appealing as it combines the features of sparsity in subset selection and dimension reduction to handle correlations among SNPs. In this paper, we investigate application of the LASSO and SPLS methods for selecting SNPs that predict quantitative traits. We evaluate the performance of both methods with different criteria and under different scenarios using simulation studies. Results indicate that these methods can be effective in selecting SNPs that predict quantitative traits but are limited by some conditions. Both methods perform similarly overall but each exhibit advantages over the other in given situations. Both methods are applied to Canadian Holstein cattle data to compare their performance.
机译:有关感兴趣的定量性状的最新工作集中在从负责该性状表型变异的SNP中选择一小部分单核苷酸多态性(SNP)。当被视为协变量时,大量的变量(SNP)及其与紧邻变量的关联对变量选择提出了挑战。最小绝对收缩和选择算子(LASSO)方法的稀疏性和收缩系数的特征似乎对SNP选择具有吸引力。稀疏偏最小二乘(SPLS)也很吸引人,因为它结合了子集选择和维数缩减中的稀疏特征以处理SNP之间的相关性。在本文中,我们调查了LASSO和SPLS方法在选择可预测数量性状的SNP方面的应用。我们通过仿真研究评估了两种方法在不同标准和不同情况下的性能。结果表明,这些方法可以有效地选择可预测数量性状但受某些条件限制的SNP。两种方法的总体性能相似,但在给定情况下均表现出优于其他方法的优势。两种方法都适用于加拿大荷斯坦牛的数据,以比较其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号