首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Identifying Bacterial Virulent Proteins by Fusing a Set of Classifiers Based on Variants of Chou's Pseudo Amino Acid Composition and on Evolutionary Information
【24h】

Identifying Bacterial Virulent Proteins by Fusing a Set of Classifiers Based on Variants of Chou's Pseudo Amino Acid Composition and on Evolutionary Information

机译:通过融合基于周氏伪氨基酸组成的变体和进化信息的一组分类器,鉴定细菌毒性蛋白

获取原文
获取原文并翻译 | 示例

摘要

The availability of a reliable prediction method for prediction of bacterial virulent proteins has several important applications in research efforts targeted aimed at finding novel drug targets, vaccine candidates, and understanding virulence mechanisms in pathogens. In this work, we have studied several feature extraction approaches for representing proteins and propose a novel bacterial virulent protein prediction method, based on an ensemble of classifiers where the features are extracted directly from the amino acid sequence and from the evolutionary information of a given protein. We have evaluated and compared several ensembles obtained by combining six feature extraction methods and several classification approaches based on two general purpose classifiers (i.e., Support Vector Machine and a variant of input decimated ensemble) and their random subspace version. An extensive evaluation was performed according to a blind testing protocol, where the parameters of the system are optimized using the training set and the system is validated in three different independent data sets, allowing selection of the most performing system and demonstrating the validity of the proposed method. Based on the results obtained using the blind test protocol, it is interesting to note that even if in each independent data set the most performing stand-alone method is not always the same, the fusion of different methods enhances prediction efficiency in all the tested independent data sets.
机译:用于预测细菌有毒蛋白质的可靠预测方法的可用性在旨在发现新型药物靶标,候选疫苗和了解病原体毒力机制的研究工作中具有多个重要应用。在这项工作中,我们研究了几种代表蛋白质的特征提取方法,并提出了一种新颖的细菌毒性蛋白质预测方法,该方法基于分类器的集合,其中特征是直接从氨基酸序列和给定蛋白质的进化信息中提取的。我们已经评估并比较了基于两种通用分类器(即支持向量机和输入抽取合奏的一种变体)及其随机子空间版本,结合了六种特征提取方法和几种分类方法而获得的多个合奏。根据盲测协议进行了广泛的评估,其中使用训练集对系统的参数进行了优化,并在三个不同的独立数据集中对系统进行了验证,从而可以选择性能最高的系统并证明所提出建议的有效性方法。基于使用盲法测试协议获得的结果,有趣的是,即使在每个独立的数据集中,性能最高的独立方法并不总是相同,不同方法的融合也提高了所有测试独立模型的预测效率数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号