首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Reconstruction of Transcriptional Regulatory Networks by Stability-Based Network Component Analysis
【24h】

Reconstruction of Transcriptional Regulatory Networks by Stability-Based Network Component Analysis

机译:通过基于稳定性的网络成分分析重建转录调控网络

获取原文
获取原文并翻译 | 示例

摘要

Reliable inference of transcription regulatory networks is a challenging task in computational biology. Network component analysis (NCA) has become a powerful scheme to uncover regulatory networks behind complex biological processes. However, the performance of NCA is impaired by the high rate of false connections in binding information. In this paper, we integrate stability analysis with NCA to form a novel scheme, namely stability-based NCA (sNCA), for regulatory network identification. The method mainly addresses the inconsistency between gene expression data and binding motif information. Small perturbations are introduced to prior regulatory network, and the distance among multiple estimated transcript factor (TF) activities is computed to reflect the stability for each TF's binding network. For target gene identification, multivariate regression and t-statistic are used to calculate the significance for each TF-gene connection. Simulation studies are conducted and the experimental results show that sNCA can achieve an improved and robust performance in TF identification as compared to NCA. The approach for target gene identification is also demonstrated to be suitable for identifying true connections between TFs and their target genes. Furthermore, we have successfully applied sNCA to breast cancer data to uncover the role of TFs in regulating endocrine resistance in breast cancer.
机译:在计算生物学中,可靠地推断转录调控网络是一项艰巨的任务。网络组件分析(NCA)已成为发现复杂生物过程背后的监管网络的强大方案。但是,绑定信息中错误连接的发生率很高,因此会损害NCA的性能。在本文中,我们将稳定性分析与NCA集成在一起,以形成一种新的方案,即基于稳定性的NCA(sNCA),用于监管网络的识别。该方法主要解决基因表达数据和结合基序信息之间的矛盾。将小的扰动引入到现有的监管网络中,并计算多个估计的转录因子(TF)活动之间的距离,以反映每个TF绑定网络的稳定性。对于目标基因识别,多元回归和t统计量用于计算每个TF基因连接的显着性。进行了仿真研究,实验结果表明,与NCA相比,sNCA可以在TF识别中实现更高的鲁棒性。还证明了用于鉴定靶基因的方法适用于鉴定TF及其靶基因之间的真实连接。此外,我们已经成功地将sNCA应用于乳腺癌数据,以揭示TF在调节乳腺癌的内分泌抵抗力中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号