首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Probabilistic Search and Energy Guidance for Biased Decoy Sampling in Ab Initio Protein Structure Prediction
【24h】

Probabilistic Search and Energy Guidance for Biased Decoy Sampling in Ab Initio Protein Structure Prediction

机译:从头算蛋白质结构预测中的偏诱诱饵采样的概率搜索和能量指导。

获取原文
获取原文并翻译 | 示例

摘要

Adequate sampling of the conformational space is a central challenge in ab initio protein structure prediction. In the absence of a template structure, a conformational search procedure guided by an energy function explores the conformational space, gathering an ensemble of low-energy decoy conformations. If the sampling is inadequate, the native structure may be missed altogether. Even if reproduced, a subsequent stage that selects a subset of decoys for further structural detail and energetic refinement may discard near-native decoys if they are high energy or insufficiently represented in the ensemble. Sampling should produce a decoy ensemble that facilitates the subsequent selection of near-native decoys. In this paper, we investigate a robotics-inspired framework that allows directly measuring the role of energy in guiding sampling. Testing demonstrates that a soft energy bias steers sampling toward a diverse decoy ensemble less prone to exploiting energetic artifacts and thus more likely to facilitate retainment of near-native conformations by selection techniques. We employ two different energy functions, the associative memory Hamiltonian with water and Rosetta. Results show that enhanced sampling provides a rigorous testing of energy functions and exposes different deficiencies in them, thus promising to guide development of more accurate representations and energy functions.
机译:构象空间的足够采样是从头算蛋白质结构预测中的主要挑战。在没有模板结构的情况下,以能量函数为指导的构象搜索过程将探索构象空间,收集低能诱饵构象的集合。如果采样不足,则可能会完全忽略本机结构。即使被复制,如果后续步骤选择的诱饵子集用于进一步的结构细节和能量优化,则如果它们的能量很高或在集合体中的代表不足,则可能会丢弃它们。采样应产生诱饵集合体,以利于随后选择近本地诱饵。在本文中,我们研究了一个受机器人技术启发的框架,该框架可直接测量能量在指导采样中的作用。测试表明,软能量偏差将采样引向多样化的诱饵集合,该集合不太倾向于利用高能伪像,因此更有可能通过选择技术促进保留近乎自然的构象。我们采用两种不同的能量函数,水和罗塞塔的联想记忆哈密顿量。结果表明,增强采样提供了对能量函数的严格测试,并揭示了其中的不同缺陷,因此有望指导开发更准确的表示形式和能量函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号