首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Growing Seed Genes from Time Series Data and Thresholded Boolean Networks with Perturbation
【24h】

Growing Seed Genes from Time Series Data and Thresholded Boolean Networks with Perturbation

机译:从时间序列数据和带有扰动的阈值布尔网络中生长种子基因

获取原文
获取原文并翻译 | 示例

摘要

Models of gene regulatory networks (GRN) have been proposed along with algorithms for inferring their structure. By structure, we mean the relationships among the genes of the biological system under study. Despite the large number of genes found in the genome of an organism, it is believed that a small set of genes is responsible for maintaining a specific core regulatory mechanism (small subnetworks). We propose an algorithm for inference of subnetworks of genes from a small initial set of genes called seed and time series gene expression data. The algorithm has two main steps: First, it grows the seed of genes by adding genes to it, and second, it searches for subnetworks that can be biologically meaningful. The seed growing step is treated as a feature selection problem and we used a thresholded Boolean network with a perturbation model to design the criterion function that is used to select the features (genes). Given that the reverse engineering of GRN is a problem that does not necessarily have one unique solution, the proposed algorithm has as output a set of networks instead of one single network. The algorithm also analyzes the dynamics of the networks which can be time-consuming. Nevertheless, the algorithm is suitable when the number of genes is small. The results showed that the algorithm is capable of recovering an acceptable rate of gene interactions and to generate regulatory hypotheses that can be explored in the wet lab.
机译:已经提出了基因调节网络(GRN)模型以及用于推断其结构的算法。通过结构,我们是指正在研究的生物系统的基因之间的关系。尽管在有机体的基因组中发现了大量的基因,但据信一小部分基因负责维持特定的核心调控机制(小的子网)。我们提出了一种算法,可以从称为种子和时间序列基因表达数据的一小部分初始基因推断出基因的子网。该算法有两个主要步骤:首先,通过向其添加基因来生长基因的种子;其次,它搜索可能具有生物学意义的子网。种子生长步骤被视为特征选择问题,我们使用带扰动模型的阈值布尔网络来设计用于选择特征(基因)的标准函数。鉴于GRN的逆向工程是一个不一定具有唯一解决方案的问题,因此所提出的算法将输出一组网络而不是单个网络作为输出。该算法还分析了可能耗时的网络动态。但是,当基因数量较少时,该算法是合适的。结果表明,该算法能够恢复可接受的基因相互作用速率,并能够产生可在湿实验室中探索的调节假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号