首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
【24h】

Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series

机译:通过表达时间序列的神经建模挖掘基因调控网络

获取原文
获取原文并翻译 | 示例

摘要

Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
机译:从数据中发现基因调控网络是近年来研究最多的主题之一。通过将表达谱建模为时间序列,神经网络可以成功地用于推断基础基因网络。这项工作提出了一种基于神经网络池的新颖方法,用于从基因表达数据集中获得基因调控网络。它们用于对数据集中的基因对之间的每种可能的相互作用进行建模,并且应用一组挖掘规则来准确检测基因之间的下层关系。在人工和真实数据集上获得的结果证实了从基因表达图谱的时间动态的正确建模中发现调控网络的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号