首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Inferring Time-Delayed Causal Gene Network Using Time-Series Expression Data
【24h】

Inferring Time-Delayed Causal Gene Network Using Time-Series Expression Data

机译:使用时序表达数据推断时延因果基因网络

获取原文
获取原文并翻译 | 示例

摘要

Inferring gene regulatory network (GRN) from the microarray expression data is an important problem in Bioinformatics, because knowing the GRN is an essential first step in understanding the inner workings of the cell and the related diseases. Time delays exist in the regulatory effects from one gene to another due to the time needed for transcription, translation, and to accumulate a sufficient number of needed proteins. Also, it is known that the delays are important for oscillatory phenomenon. Therefore, it is crucial to develop a causal gene network model, preferably as a function of time. In this paper, we propose an algorithm to infer causal directed links in GRN with time delays and regulatory effects in the links from time-series microarray gene expression data. It is one of the most comprehensive in terms of features compared to the state-of-the-art discrete gene network models. We have tested on synthetic data, the IRMA (On and Off) datasets and the yeast expression data validated using KEGG pathways. Results show that can effectively recover the links, the time delays and the regulatory effects in the synthetic data, and outperforms other algorithms in the IRMA datasets.
机译:从微阵列表达数据推断基因调控网络(GRN)是生物信息学中的一个重要问题,因为了解GRN是了解细胞和相关疾病的内部运作的至关重要的第一步。由于转录,翻译和积累足够数量的所需蛋白质所需的时间,从一个基因到另一个基因的调节作用存在时间延迟。另外,已知延迟对于振荡现象很重要。因此,至关重要的是建立因果基因网络模型,最好是作为时间的函数。在本文中,我们提出了一种算法,可以从时间序列微阵列基因表达数据推断出GRN中的因果有向联系,并带有时间延迟和调节作用。与最新的离散基因网络模型相比,它是功能最全面的模型之一。我们已经对合成数据,IRMA(开和关)数据集以及使用KEGG途径验证的酵母表达数据进行了测试。结果表明,该方法可以有效地恢复合成数据中的链接,时间延迟和调节效果,并且优于IRMA数据集中的其他算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号