首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >An Unsupervised Graph Based Continuous Word Representation Method for Biomedical Text Mining
【24h】

An Unsupervised Graph Based Continuous Word Representation Method for Biomedical Text Mining

机译:基于无监督图的生物医学文本挖掘连续词表示方法

获取原文
获取原文并翻译 | 示例

摘要

In biomedical text mining tasks, distributed word representation has succeeded in capturing semantic regularities, but most of them are shallow-window based models, which are not sufficient for expressing the meaning of words. To represent words using deeper information, we make explicit the semantic regularity to emerge in word relations, including dependency relations and context relations, and propose a novel architecture for computing continuous vector representation by leveraging those relations. The performance of our model is measured on word analogy task and Protein-Protein Interaction Extraction (PPIE) task. Experimental results show that our method performs overall better than other word representation models on word analogy task and have many advantages on biomedical text mining.
机译:在生物医学文本挖掘任务中,分布式单词表示已成功捕获了语义规律,但其中大多数是基于浅窗口的模型,不足以表达单词的含义。为了使用更深的信息表示单词,我们明确了出现在单词关系(包括依赖关系和上下文关系)中的语义规律,并提出了一种利用这些关系来计算连续向量表示的新颖体系结构。我们的模型的性能是通过单词类比任务和蛋白质-蛋白质相互作用提取(PPIE)任务来衡量的。实验结果表明,该方法在词类比任务上的整体表现优于其他词表示模型,在生物医学文本挖掘方面具有很多优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号