首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Improving Recognition of Antimicrobial Peptides and Target Selectivity through Machine Learning and Genetic Programming
【24h】

Improving Recognition of Antimicrobial Peptides and Target Selectivity through Machine Learning and Genetic Programming

机译:通过机器学习和遗传编程提高抗菌肽的识别能力和目标选择性

获取原文
获取原文并翻译 | 示例

摘要

Growing bacterial resistance to antibiotics is spurring research on utilizing naturally-occurring antimicrobial peptides (AMPs) as templates for novel drug design. While experimentalists mainly focus on systematic point mutations to measure the effect on antibacterial activity, the computational community seeks to understand what determines such activity in a machine learning setting. The latter seeks to identify the biological signals or features that govern activity. In this paper, we advance research in this direction through a novel method that constructs and selects complex sequence-based features which capture information about distal patterns within a peptide. Comparative analysis with state-of-the-art methods in AMP recognition reveals our method is not only among the top performers, but it also provides transparent summarizations of antibacterial activity at the sequence level. Moreover, this paper demonstrates for the first time the capability not only to recognize that a peptide is an AMP or not but also to predict its target selectivity based on models of activity against only Gram-positive, only Gram-negative, or both types of bacteria. The work described in this paper is a step forward in computational research seeking to facilitate AMP design or modification in the wet laboratory.
机译:细菌对抗生素的耐药性不断提高,正在推动利用天然存在的抗菌肽(AMP)作为新药设计模板的研究。虽然实验学家主要关注系统的点突变来衡量对抗菌活性的影响,但计算机界试图了解是什么决定了机器学习环境中的这种活性。后者试图确定控制活动的生物学信号或特征。在本文中,我们通过一种新颖的方法来朝这个方向推进研究,该方法构造并选择了基于复杂序列的特征,这些特征捕获了肽段内远端模式的信息。使用AMP识别中的最新方法进行的比较分析表明,我们的方法不仅表现最佳,而且在序列水平上也提供了抗菌活性的透明汇总。此外,本文首次展示了不仅识别肽是否为AMP的能力,而且还基于仅针对革兰氏阳性,仅革兰氏阴性或两种类型的荷尔蒙的活性模型预测其目标选择性的能力。菌。本文描述的工作是计算研究的一个进步,旨在促进湿实验室中AMP的设计或修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号