首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Fireworks Algorithm with Enhanced Fireworks Interaction
【24h】

Fireworks Algorithm with Enhanced Fireworks Interaction

机译:具有增强型Fireworks交互功能的Fireworks算法

获取原文
获取原文并翻译 | 示例

摘要

As a relatively new metaheuristic in swarm intelligence, fireworks algorithm (FWA) has exhibited promising performance on a wide range of optimization problems. This paper aims to improve FWA by enhancing fireworks interaction in three aspects: 1) Developing a new Gaussian mutation operator to make sparks learn from more exemplars; 2) Integrating the regular explosion operator of FWA with the migration operator of biogeography-based optimization (BBO) to increase information sharing; 3) Adopting a new population selection strategy that enables high-quality solutions to have high probabilities of entering the next generation without incurring high computational cost. The combination of the three strategies can significantly enhance fireworks interaction and thus improve solution diversity and suppress premature convergence. Numerical experiments on the CEC 2015 single-objective optimization test problems show the effectiveness of the proposed algorithm. The application to a high-speed train scheduling problem also demonstrates its feasibility in real-world optimization problems.
机译:作为群智能中一种相对较新的元启发式方法,烟花算法(FWA)在广泛的优化问题上表现出了令人鼓舞的性能。本文旨在通过在三个方面增强烟花互动来改善FWA:1)开发新的高斯变异算子以使火花从更多示例中学习; 2)将FWA的常规爆炸算子与基于生物地理的优化(BBO)的迁移算子相集成,以增加信息共享; 3)采用新的人口选择策略,使高质量的解决方案具有较高的可能性进入下一代,而不会产生高昂的计算成本。三种策略的组合可以显着增强烟花交流,从而改善解决方案的多样性并抑制过早的收敛。 CEC 2015单目标优化测试问题的数值实验表明了该算法的有效性。在高速列车调度问题上的应用也证明了其在实际优化问题中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号