首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Putative Drug and Vaccine Target Identification in Leishmania donovani Membrane Proteins Using Naïve Bayes Probabilistic Classifier
【24h】

Putative Drug and Vaccine Target Identification in Leishmania donovani Membrane Proteins Using Naïve Bayes Probabilistic Classifier

机译:使用朴素贝叶斯概率分类器在利什曼原虫donovani膜蛋白中的推定药物和疫苗靶标识别

获取原文
获取原文并翻译 | 示例

摘要

Predicting the role of protein is one of the most challenging problems. There are few approaches available for the prediction of role of unknown protein in terms of drug target or vaccine candidate. We propose here Naïve Bayes probabilistic classifier, a promising method for reliable predictions. This method is tested on the proteins identified in our mass spectrometry based membrane protemics study of Leishmania donovani parasite that causes a fatal disease (Visceral Leishmaniasis) in humans all around the world. Most of the vaccine/drug targets belonging to membrane proteins are represented as key players in the pathogenesis of Leishmania infection. Analyses of our previous results, using Naïve Bayes probabilistic classifier, indicate that this method predicts the role of unknown/hypothetical protein (as drug target/vaccine candidate) significantly with higher precision. We have employed this method in order to provide probabilistic predictions of unknown/hypothetical proteins as targets. This study reports the unknown/hypothetical proteins of Leishmania membrane fraction as a potential drug targets and vaccine candidate which is vital information for this parasite. Future molecular studies and characterization of these potent targets may produce a recombinant therapeutic/prophylactic tool against Visceral Leishmaniasis. These unknown/hypothetical proteins may open a vast research field to be exploited for novel treatment strategies.
机译:预测蛋白质的作用是最具挑战性的问题之一。就药物靶标或候选疫苗而言,很少有方法可用于预测未知蛋白质的作用。我们在这里提出朴素贝叶斯概率分类器,这是一种可靠的预测方法。该方法已在我们基于质谱的膜分离研究Leishmania donovani寄生虫中鉴定出的蛋白质上进行了测试,该寄生虫可导致全世界人类的致命疾病(内脏利什曼病)。属于膜蛋白的大多数疫苗/药物靶标是利什曼原虫感染发病机理中的关键角色。使用朴素贝叶斯概率分类器对我们先前的结果进行的分析表明,该方法可以更精确地预测未知/假设蛋白(作为药物靶标/疫苗候选物)的作用。为了提供未知/假设蛋白作为靶标的概率预测,我们采用了这种方法。这项研究报告了利什曼原虫膜级分的未知/假设蛋白作为潜在的药物靶标和候选疫苗,这是该寄生虫的重要信息。未来的分子研究和这些有效靶标的表征可能会产生针对内脏利什曼病的重组治疗/预防工具。这些未知/假设的蛋白质可能会为广阔的研究领域开辟新的治疗策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号