首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Relation Prediction of Co-Morbid Diseases Using Knowledge Graph Completion
【24h】

Relation Prediction of Co-Morbid Diseases Using Knowledge Graph Completion

机译:知识图完成的持续病态疾病的关系预测

获取原文
获取原文并翻译 | 示例

摘要

Co-morbid disease condition refers to the simultaneous presence of one or more diseases along with the primary disease. A patient suffering from co-morbid diseases possess more mortality risk than with a disease alone. So, it is necessary to predict co-morbid disease pairs. In past years, though several methods have been proposed by researchers for predicting the co-morbid diseases, not much work is done in prediction using knowledge graph embedding using tensor factorization. Moreover, the complex-valued vector-based tensor factorization is not being used in any knowledge graph with biological and biomedical entities. We propose a tensor factorization based approach on biological knowledge graphs. Our method introduces the concept of complex-valued embedding in knowledge graphs with biological entities. Here, we build a knowledge graph with disease-gene associations and their corresponding background information. To predict the association between prevalent diseases, we use ComplEx embedding based tensor decomposition method. Besides, we obtain new prevalent disease pairs using the MCL algorithm in a disease-gene-gene network and check their corresponding inter-relations using edge prediction task.
机译:共同病态疾病状况是指同时存在一种或多种疾病以及原代疾病。患有患有顽固性疾病的患者具有比单独疾病更多的死亡率风险。因此,有必要预测共同病态的病态。在过去几年中,虽然研究人员提出了几种方法来预测持续病态疾病,但在使用张量分解的知识图形嵌入的知识图表中,在预测中完成了不多的工作。此外,基于复值的载体的张量分解不在任何知识图中使用生物学和生物医学实体。我们提出了一种基于生物知识图的张于基于张解的方法。我们的方法介绍了具有生物实体知识图中复杂价值嵌入的概念。在这里,我们构建了一种具有疾病 - 基因关联的知识图及其相应的背景信息。为了预测普遍疾病之间的关联,我们使用基于复杂的嵌入的张量分解方法。此外,我们使用疾病 - 基因基因网络中的MCL算法获得新的普遍存在疾病对,并使用边缘预测任务检查其相应的相互关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号