首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >A Novel Drug Repositioning Approach Based on Collaborative Metric Learning
【24h】

A Novel Drug Repositioning Approach Based on Collaborative Metric Learning

机译:一种基于协同公制学习的新药重新定位方法

获取原文
获取原文并翻译 | 示例

摘要

Computational drug repositioning, which is an efficient approach to find potential indications for drugs, has been used to increase the efficiency of drug development. The drug repositioning problem essentially is a top-K recommendation task that recommends most likely diseases to drugs based on drug and disease related information. Therefore, many recommendation methods can be adopted to drug repositioning. Collaborative metric learning (CML) algorithm can produce distance metrics that capture the important relationships among objects, and has been widely used in recommendation domains. By applying CML in drug repositioning, a joint metric space is learned to encode drug's relationships with different diseases. In this study, we propose a novel drug repositioning computational method using Collaborative Metric Learning to predict novel drug-disease associations based on known drug and disease related information. Specifically, the proposed method learns latent vectors of drugs and diseases by applying metric learning, and then predicts the association probability of one drug-disease pair based on the learned vectors. The comprehensive experimental results show that CMLDR outperforms the other state-of-the-art drug repositioning algorithms in terms of precision, recall, and AUPR.
机译:计算药物重新定位,这是寻找药物潜在适应症的有效方法,用于提高药物开发的效率。药物重新定位问题基本上是一项基于药物和疾病相关信息的药物疾病的Top-K推荐任务。因此,可以采用许多推荐方法来药物重新定位。协作度量学习(CML)算法可以产生捕获物体之间重要关系的距离指标,并已广泛用于推荐域。通过在药物重新定位施用CML,学会了一个关节度量空间来编码药物与不同疾病的关系。在这项研究中,我们提出了一种新的药物重新定位计算方法,使用协同公制学习来预测基于已知药物和疾病相关信息的新型毒性疾病关联。具体地,所提出的方法通过施加度量学习来学习药物和疾病的潜在载体,然后基于所学的载体预测一种药物疾病对的关联概率。综合实验结果表明,CMLDR在精确,召回和AUPR方面表现出其他最先进的药物重新定位算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号