首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Single-Cell RNA Sequencing Data Interpretation by Evolutionary Multiobjective Clustering
【24h】

Single-Cell RNA Sequencing Data Interpretation by Evolutionary Multiobjective Clustering

机译:进化多目标聚类单细胞RNA测序数据解释

获取原文
获取原文并翻译 | 示例

摘要

In recent years, single-cell RNA sequencing reveals diverse cell genetics at unprecedented resolutions. Such technological advances enable researchers to uncover the functionally distinct cell subtypes such as hematopoietic stem cell subpopulation identification. However, most of the related algorithms have been hindered by the high-dimensionality and sparse nature of single-cell RNA sequencing (RNA-seq) data. To address those problems, we propose a multiobjective evolutionary clustering based on adaptive non-negative matrix factorization (MCANMF) for multiobjective single-cell RNA-seq data clustering. First, adaptive non-negative matrix factorization is proposed to decompose data for feature extraction. After that, a multiobjective clustering algorithm based on learning vector quantization is proposed to analyze single-cell RNA-seq data. To validate the effectiveness of MCANMF, we benchmark MCANMF against 15 state-of-the-art methods including seven feature extraction methods, seven clustering methods, and the kernel-based similarity learning method on six published single-cell RNA sequencing datasets comprehensively. When compared with those 15 state-of-the-art methods, MCANMF performs better than the others on those single-cell RNA sequencing datasets according to multiple evaluation metrics. Moreover, the MCANMF component analysis, time complexity analysis, and parameter analysis are conducted to demonstrate various properties of our proposed algorithm.
机译:近年来,单细胞RNA测序显示出在前所未有的分辨率下的不同细胞遗传学。这种技术进步使研究人员能够揭示功能上独特的细胞亚型,例如造血干细胞亚群鉴定。然而,大多数相关算法已经受到单细胞RNA测序(RNA-SEQ)数据的高维性和稀疏性质的阻碍。为了解决这些问题,我们提出了一种基于自适应非负矩阵分解(MCANMF)的多目标进化聚类,用于多目标单单元RNA-SEQ数据聚类。首先,提出了自适应非负矩阵分解以分解特征提取的数据。之后,提出了一种基于学习矢量量化的多目标聚类算法来分析单细胞RNA-SEQ数据。为了验证MCANMF的有效性,我们将MCANMF基于15个最先进的方法,包括七种特征提取方法,七种聚类方法和基于内核的相似性学习方法全面地进行六个公开的单细胞RNA测序数据集。与那些15最先进的方法相比,MCANMF根据多个评估指标比在那些单细胞RNA测序数据集上更好地执行。此外,进行了MCANMF分量分析,时间复杂性分析和参数分析,以展示我们所提出的算法的各种性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号