首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >RNA-Protein Binding Sites Prediction via Multi Scale Convolutional Gated Recurrent Unit Networks
【24h】

RNA-Protein Binding Sites Prediction via Multi Scale Convolutional Gated Recurrent Unit Networks

机译:通过多尺度卷积门控复发单元网络预测RNA-蛋白质结合位点

获取原文
获取原文并翻译 | 示例

摘要

RNA-Protein binding plays important roles in the field of gene expression. With the development of high throughput sequencing, several conventional methods and deep learning-based methods have been proposed to predict the binding preference of RNA-protein binding. These methods can hardly meet the need of consideration of the dependencies between subsequence and the various motif lengths of different translation factors (TFs). To overcome such limitations, we propose a predictive model that utilizes a combination of multi-scale convolutional layers and bidirectional gated recurrent unit (GRU) layer. Multi-scale convolution layer has the ability to capture the motif features of different lengths, and bidirectional GRU layer is able to capture the dependencies among subsequence. Experimental results show that the proposed method performs better than four state-of-the-art methods in this field. In addition, we investigate the effect of model structure on model performance by performing our proposed method with a different convolution layer and a different number of kernel size. We also demonstrate the effectiveness of bidirectional GRU in improving model performance through comparative experiments.
机译:RNA-蛋白质结合在基因表达领域起着重要作用。随着高通量测序的发展,已经提出了几种常规方法和基于深度学习的方法来预测RNA蛋白结合的结合偏好。这些方法几乎不能考虑随后和不同平移因子(TFS)之间的各种主题长度之间的依赖性的需要。为了克服这些限制,我们提出了一种预测模型,其利用多尺度卷积层和双向门控复发单元(GRU)层的组合。多尺度卷积层具有捕获不同长度的图案特征的能力,双向GRU层能够捕获随后之间的依赖性。实验结果表明,该方法在该领域中的四种最先进的方法表现优于四种最先进的方法。此外,我们通过用不同的卷积层和不同数量的内核大小执行我们提出的方法来研究模型结构对模型性能的影响。我们还证明了双向GRU通过比较实验提高了模型性能的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号