首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >A Deep Learning Approach for Targeted Contrast-Enhanced Ultrasound Based Prostate Cancer Detection
【24h】

A Deep Learning Approach for Targeted Contrast-Enhanced Ultrasound Based Prostate Cancer Detection

机译:一种基于造影剂的靶向超声增强前列腺癌检测的深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

The important role of angiogenesis in cancer development has driven many researchers to investigate the prospects of noninvasive cancer diagnosis based on the technology of contrast-enhanced ultrasound (CEUS) imaging. This paper presents a deep learning framework to detect prostate cancer in the sequential CEUS images. The proposed method uniformly extracts features from both the spatial and the temporal dimensions by performing three-dimensional convolution operations, which captures the dynamic information of the perfusion process encoded in multiple adjacent frames for prostate cancer detection. The deep learning models were trained and validated against expert delineations over the CEUS images recorded using two types of contrast agents, i.e., the anti-PSMA based agent targeted to prostate cancer cells and the non-targeted blank agent. Experiments showed that the deep learning method achieved over 91 percent specificity and 90 percent average accuracy over the targeted CEUS images for prostate cancer detection, which was superior (p < 0.05) than previously reported approaches and implementations.
机译:血管生成在癌症发展中的重要作用驱使许多研究人员研究基于对比增强超声(CEUS)成像技术的无创性癌症诊断的前景。本文提出了一种深度学习框架,用于在连续的CEUS图像中检测前列腺癌。所提出的方法通过执行三维卷积操作从空间和时间维度上均匀地提取特征,该三维卷积操作捕获在多个相邻帧中编码的灌注过程的动态信息以用于前列腺癌检测。对深度学习模型进行了训练,并针对使用两种类型的造影剂(即靶向前列腺癌细胞的基于抗PSMA的试剂和非靶向空白试剂)记录的CEUS图像进行了专家划定,并对其进行了验证。实验表明,与用于前列腺癌检测的目标CEUS图像相比,深度学习方法实现了91%以上的特异性和90%的平均准确度,比以前报道的方法和实施要好(p <0.05)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号