首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture
【24h】

Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture

机译:基于深度学习架构的蛋白质-蛋白质相互作用界面残基对预测

获取原文
获取原文并翻译 | 示例

摘要

Motivation: Proteins usually fulfill their biological functions by interacting with other proteins. Although some methods have been developed to predict the binding sites of a monomer protein, these are not sufficient for prediction of the interaction between two monomer proteins. The correct prediction of interface residue pairs from two monomer proteins is still an open question and has great significance for practical experimental applications in the life sciences. We hope to build a method for the prediction of interface residue pairs that is suitable for those applications. Results: Here, we developed a novel deep network architecture called the multi-layered Long-Short Term Memory networks (LSTMs) approach for the prediction of protein interface residue pairs. First, we created three new descriptions and used other six worked characterizations to describe an amino acid, then we employed these features to discriminate between interface residue pairs and non-interface residue pairs. Second, we used two thresholds to select residue pairs that are more likely to be interface residue pairs. Furthermore, this step increases the proportion of interface residue pairs and reduces the influence of imbalanced data. Third, we built deep network architectures based on Long-Short Term Memory networks algorithm to organize and refine the prediction of interface residue pairs by employing features mentioned above. We trained the deep networks on dimers in the unbound state in the international Protein-protein Docking Benchmark version 3.0. The updated data sets in the versions 4.0 and 5.0 were used as the validation set and test set respectively. For our best model, the accuracy rate was over 62 percent when we chose the top 0.2 percent pairs of every dimer in the test set as predictions, which will be very helpful for the understanding of protein-protein interaction mechanisms and for guidance in biological experiments.
机译:动机:蛋白质通常通过与其他蛋白质相互作用来履行其生物学功能。尽管已经开发出一些方法来预测单体蛋白的结合位点,但是这些方法不足以预测两种单体蛋白之间的相互作用。从两个单体蛋白正确预测界面残基对仍然是一个悬而未决的问题,对于生命科学中的实际实验应用具有重要意义。我们希望建立一种适合这些应用的界面残基对预测方法。结果:在这里,我们开发了一种新颖的深度网络架构,称为多层长短期记忆网络(LSTM)方法,用于预测蛋白质界面残基对。首先,我们创建了三个新的描述,并使用其他六个有效的表征来描述一种氨基酸,然后我们利用这些功能来区分界面残基对和非界面残基对。其次,我们使用两个阈值来选择更可能是界面残基对的残基对。此外,此步骤增加了界面残基对的比例,并减少了不平衡数据的影响。第三,我们建立了基于长期记忆网络算法的深度网络体系结构,以利用上述功能组织和完善接口残差对的预测。我们在国际蛋白质对接基准3.0版中对未结合状态的二聚体深层网络进行了培训。版本4.0和5.0中的更新数据集分别用作验证集和测试集。对于我们的最佳模型,当我们选择测试集中每个二聚体的前0.2%对作为预测时,准确率超过62%,这将有助于理解蛋白质-蛋白质相互作用机制并为生物学实验提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号