首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data
【24h】

Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data

机译:混合指数族随机图模型的网络聚类分析及其在遗传相互作用数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

Motivation: Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponential-family random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g., the density, centrality, and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM. Results: EM algorithm is a classical method to solve the mixture problem, however, it will be very slow when the data size is huge in the numerous applications. We adopt an efficient novel online graph clustering algorithm to classify the graph nodes and estimate the ERGM parameters for the MixtureERGM. In comparison studies, the MixtureERGM outperforms the role analysis for the network cluster in which the mixture of exponential-family random graph model is developed for many ego-network according to their roles. One genetic interaction network of yeast and two real social networks (provided as supplemental materials, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2017.2743711) show the wide potential application of the MixtureERGM.
机译:动机:上位性微型配偶谱(EMAP)研究已使大规模遗传相互作用网络成为可能,并在模型生物中产生了大量数据。它提供了一套令人难以置信的分子工具和先进技术,可以有效地了解个体的基因型和表型之间的关系。但是,使用传统的统计网络模型无法完全利用从EMAP获得的网络信息。例如,由于遗传网络始终是异构的,因此节点的一个子集的网络结构特征与左侧节点的网络结构特征不同。指数族随机图模型(ERGM)是一系列统计模型,它们提供了一种原理化且灵活的方式来描述观察到的网络的结构特征(例如密度,中心性和分类性)。但是,单个ERGM不足以捕获网络的这种异构性。在本文中,我们考虑了混合ERGM(MixtureEGRM)网络,该网络对具有多个社区的网络进行建模,其中每个社区都由一个EGRM来描述。结果:EM算法是解决混合问题的经典方法,但是,在众多应用中,当数据量巨大时,它将非常慢。我们采用一种高效的新型在线图聚类算法对图节点进行分类,并为MixtureERGM估计ERGM参数。在比较研究中,MixtureERGM胜过网络集群的角色分析,在网络集群中,根据许多自我网络的作用,为它们建立了指数族随机图模型的混合体。一个酵母的遗传相互作用网络和两个真实的社交网络(作为补充材料提供,可以在计算机协会数字图书馆中找到,网址为http://doi.ieeecomputersociety.org/10.1109/TCBB.2017.2743711),显示了酵母的广泛应用潜力。 MixtureERGM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号