首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Learning a Structural and Functional Representation for Gene Expressions: To Systematically Dissect Complex Cancer Phenotypes
【24h】

Learning a Structural and Functional Representation for Gene Expressions: To Systematically Dissect Complex Cancer Phenotypes

机译:学习基因表达的结构和功能表示:系统地解剖复杂的癌症表型。

获取原文
获取原文并翻译 | 示例

摘要

Cancer is a heterogeneous disease, thus one of the central problems is how to dissect the resulting complex phenotypes in terms of their biological building blocks. Computationally, this is to represent and interpret high dimensional observations through a structural and conceptual abstraction into the most influential determinants underlying the problem. The working hypothesis of this report is to consider gene interaction to be largely responsible for the manifestation of complex cancer phenotypes, thus where the representation is to be conceptualized. Here, we report a representation learning strategy combined with regularizations, in which gene expressions are described in terms of a regularized product of meta-genes and their expression levels. The meta-genes are constrained by gene interactions thus representing their original topological contexts. The expression levels are supervised by their conditional dependencies among the observations thus providing a cluster-specific constraint. We obtain both of these structural constraints using a node-based graphical model. Our representation allows the selection of more influential modules, thus implicating their possible roles in neoplastic transformations. We validate our representation strategy by its robust recognitions of various cancer phenotypes comparing with various classical methods. The modules discovered are either shared or specify for different types or stages of human cancers, all of which are consistent with literature and biology.
机译:癌症是一种异质性疾病,因此主要问题之一是如何根据其生物学组成部分来剖析所产生的复杂表型。从计算上讲,这是通过对构成问题根源的最有影响力的决定因素的结构和概念抽象来表示和解释高维观测。该报告的工作假设是考虑基因相互作用在很大程度上负责复杂癌症表型的表现,因此在此表述要概念化。在这里,我们报告了结合正则化的表示学习策略,其中根据元基因的正则乘积及其表达水平描述了基因表达。元基因受到基因相互作用的限制,因此代表了它们的原始拓扑环境。表达水平由观察之间的条件依赖性进行监督,从而提供了特定于群集的约束。我们使用基于节点的图形模型来获得这两个结构约束。我们的代表制允许选择更具影响力的模块,从而暗示它们在肿瘤转化中的可能作用。我们通过与各种经典方法相比对各种癌症表型的可靠识别来验证我们的代表策略。发现的模块可以共享或指定用于不同类型或不同阶段的人类癌症,所有这些都与文献和生物学一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号