首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Unsupervised Discovery of Geometrically Common Structural Motifs and Long-Range Contacts in Protein 3D Structures
【24h】

Unsupervised Discovery of Geometrically Common Structural Motifs and Long-Range Contacts in Protein 3D Structures

机译:蛋白质3D结构中几何共同结构母题和远距离接触的无监督发现

获取原文
获取原文并翻译 | 示例

摘要

The essential role of small evolutionarily conserved structural units in proteins has been extensively researched and validated. A popular example are serine proteases, where the peptide cleavage reaction is realized by a configuration of only three residues. Brought to spatial proximity during the protein folding process, such structural motifs are often long-range contacts and usually hard to detect at sequence level. Due to the constantly increasing resource of protein 3D structure data, the computational identification of structural motifs can contribute significantly to the understanding of protein fold and function. Thus, we propose a method to discover structural motifs of high geometrical similarity and desired sequence separation in protein 3D structure data. By utilizing methods originated from data mining, no a priori knowledge is required. The applicability of the method is demonstrated by the identification of the catalytic unit of serine proteases and the ion-coordination center of cupredoxins. Furthermore, large-scale analysis of the entire Protein Data Bank points towards the presence of ubiquitous structural motifs, independent of any specific fold or function. We envision that our method is suitable to uncover functional mechanisms and to derive fingerprint libraries of structural motifs, which could be used to assess protein family association.
机译:蛋白质中进化上保守的小结构单元的重要作用已得到广泛研究和验证。一个流行的例子是丝氨酸蛋白酶,其中肽切割反应仅通过三个残基的构型实现。在蛋白质折叠过程中,这种结构基序通常是长距离接触,通常很难在序列水平上检测到,因此在蛋白质折叠过程中处于空间邻近状态。由于蛋白质3D结构数据的资源不断增加,对结构基序的计算鉴定可以大大有助于蛋白质折叠和功能的理解。因此,我们提出了一种在蛋白质3D结构数据中发现高几何相似性和所需序列分离的结构基序的方法。通过利用源自数据挖掘的方法,不需要先验知识。该方法的适用性通过鉴定丝氨酸蛋白酶的催化单元和铜氧还蛋白的离子配位中心来证明。此外,对整个蛋白质数据库的大规模分析表明,存在无处不在的结构基序,而与任何特定的折叠或功能无关。我们设想,我们的方法适用于揭示功能机制和推导结构基序的指纹库,该库可用于评估蛋白质家族关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号