首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases
【24h】

DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases

机译:DNRLMF-MDA:基于microRNA与疾病的相似性预测microRNA疾病关联

获取原文
获取原文并翻译 | 示例

摘要

MicroRNAs (miRNAs) are a class of non-coding RNAs about similar to 22nt nucleotides. Studies have proven that miRNAs play key roles in many human complex diseases. Therefore, discovering miRNA-disease associations is beneficial to understanding disease mechanisms, developing drugs, and treating complex diseases. It is well known that it is a time-consuming and expensive process to discover the miRNA-disease associations via biological experiments. Alternatively, computational models could provide a low-cost and high-efficiency way for predicting miRNA-disease associations. In this study, we propose a method (called DNRLMF-MDA) to predict miRNA-disease associations based on dynamic neighborhood regularized logistic matrix factorization. DNRLMF-MDA integrates known miRNA-disease associations, functional similarity and Gaussian Interaction Profile (GIP) kernel similarity of miRNAs, and functional similarity and GIP kernel similarity of diseases. Especially, positive observations (known miRNA-disease associations) are assigned higher importance levels than negative observations (unknown miRNA-disease associations).DNRLMF-MDA computes the probability that a miRNA would interact with a disease by a logistic matrix factorization method, where latent vectors of miRNAs and diseases represent the properties of miRNAs and diseases, respectively, and further improve prediction performance via dynamic neighborhood regularized. The 5-fold cross validation is adopted to assess the performance of our DNRLMF-MDA, as well as other competing methods for comparison. The computational experiments show that DNRLMF-MDA outperforms the state-of-art method PBMDA. The AUC values of DNRLMF-MDA on three datasets are 0.9357, 0.9411, and 0.9416, respectively, which are superior to the PBMDA's results of 0.9218, 0.9187, and 0.9262. The average computation times per 5-fold cross validation of DNRLMF-MDA on three datasets are 38, 46, and 50 seconds, which are shorter than the PBMDA's average computation times of 10869, 916, and 8448 seconds, respectively. DNRLMF-MDA also can predict potential diseases for new miRNAs. Furthermore, case studies illustrate that DNRLMF-MDA is an effective method to predict miRNA-disease associations.
机译:微小RNA(miRNA)是一类类似于22nt核苷酸的非编码RNA。研究证明,miRNA在许多人类复杂疾病中起关键作用。因此,发现miRNA-疾病关联有助于了解疾病的机制,开发药物和治疗复杂疾病。众所周知,通过生物学实验发现miRNA-疾病关联是一个耗时且昂贵的过程。备选地,计算模型可以提供用于预测miRNA-疾病关联的低成本和高效方式。在这项研究中,我们提出了一种基于动态邻域正则化逻辑矩阵分解的方法(称为DNRLMF-MDA)来预测miRNA-疾病关联。 DNRLMF-MDA整合了已知的miRNA疾病关联,miRNA的功能相似性和高斯相互作用谱(GIP)内核相似性,以及疾病的功能相似性和GIP内核相似性。特别是,对阳性结果(已知的miRNA-疾病关联)的重要性级别要高于对阴性结果(未知的miRNA-疾病关联).DNRLMF-MDA通过逻辑矩阵分解方法计算miRNA与疾病相互作用的可能性miRNA和疾病的载体分别代表miRNA和疾病的特性,并通过动态邻域正则化进一步提高预测性能。采用5倍交叉验证来评估DNRLMF-MDA以及其他竞争方法的性能。计算实验表明,DNRLMF-MDA优于最新方法PBMDA。在三个数据集上,DNRLMF-MDA的AUC值分别为0.9357、0.9411和0.9416,优于PBMDA的结果0.9218、0.9187和0.9262。在三个数据集上,DNRLMF-MDA每5倍交叉验证的平均计算时间为38、46和50秒,分别比PBMDA的平均计算时间10869、916和8448秒短。 DNRLMF-MDA还可以预测新miRNA的潜在疾病。此外,案例研究表明,DNRLMF-MDA是预测miRNA疾病关联的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号