首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >ANTENNA, a Multi-Rank, Multi-Layered Recommender System for Inferring Reliable Drug-Gene-Disease Associations: Repurposing Diazoxide as a Targeted Anti-Cancer Therapy
【24h】

ANTENNA, a Multi-Rank, Multi-Layered Recommender System for Inferring Reliable Drug-Gene-Disease Associations: Repurposing Diazoxide as a Targeted Anti-Cancer Therapy

机译:ANTENNA,用于推断可靠的药物-基因-疾病关联的多排位,多层推荐系统:将二氮嗪作为一种针对性的抗癌治疗手段

获取原文
获取原文并翻译 | 示例

摘要

Existing drug discovery processes follow a reductionist model of “one-drug-one-gene-one-disease,” which is inadequate to tackle complex diseases involving multiple malfunctioned genes. The availability of big omics data offers opportunities to transform drug discovery process into a new paradigm of systems pharmacology that focuses on designing drugs to target molecular interaction networks instead of a single gene. Here, we develop a reliable multi-rank, multi-layered recommender system, ANTENNA, to mine large-scale chemical genomics and disease association data for prediction of novel drug-gene-disease associations. ANTENNA integrates a novel tri-factorization based dual-regularized weighted and imputed One Class Collaborative Filtering (OCCF) algorithm, tREMAP, with a statistical framework based on Random Walk with Restart and assess the reliability of specific predictions. In the benchmark, tREMAP clearly outperforms the single-rank OCCF. We apply ANTENNA to a real-world problem: repurposing old drugs for new clinical indications without effective treatments. We discover that FDA-approved drug diazoxide can inhibit multiple kinase genes responsible for many diseases including cancer and kill triple negative breast cancer (TNBC) cells efficiently${ext{(IC}}_{50} = {{0.87}},{{mu}ext{M)}}$. TNBC is a deadly disease without effective targeted therapies. Our finding demonstrates the power of big data analytics in drug discovery and developing a targeted therapy for TNBC.
机译:现有的药物发现过程遵循的是“一种药物一种基因一种疾病”的简化论模型,该模型不足以解决涉及多个功能异常基因的复杂疾病。大组学数据的可用性为将药物发现过程转变为系统药理学的新范式提供了机会,该系统范式着重于设计靶向分子相互作用网络而不是单个基因的药物。在这里,我们开发了一种可靠的多等级,多层推荐系统ANTENNA,以挖掘大规模的化学基因组学和疾病关联数据,以预测新型药物基因-疾病关联。 ANTENNA将基于三因子分解的新型双正则加权和归类一类协作过滤(OCCF)算法tREMAP与基于带有重启的随机游走的统计框架进行了集成,并评估了特定预测的可靠性。在基准测试中,tREMAP明显优于单级OCCF。我们将ANTENNA应用于一个现实世界的问题:在没有有效治疗的情况下将旧药物重新用于新的临床适应症。我们发现FDA批准的药物二氮嗪可以抑制多种激酶基因,这些激酶基因负责许多疾病,包括癌症,并有效杀死三阴性乳腺癌(TNBC)细胞 n $ { t​​ext {( IC}} _​​ {50} = {{0.87}} ,{{ mu} text {M)}} $ n。 TNBC是一种致命的疾病,没有有效的针对性治疗。我们的发现证明了大数据分析在药物发现和开发针对TNBC的靶向疗法中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号