首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Immunological Approach for Full NURBS Reconstruction of Outline Curves from Noisy Data Points in Medical Imaging
【24h】

Immunological Approach for Full NURBS Reconstruction of Outline Curves from Noisy Data Points in Medical Imaging

机译:免疫方法从医学影像中的嘈杂数据点完全重建轮廓曲线

获取原文
获取原文并翻译 | 示例

摘要

Curve reconstruction from data points is an important issue for advanced medical imaging techniques, such as computer tomography (CT) and magnetic resonance imaging (MRI). The most powerful fitting functions for this purpose are the NURBS (non-uniform rational B-splines). Solving the general reconstruction problem with NURBS requires computing all free variables of the problem (data parameters, breakpoints, control points, and their weights). This leads to a very difficult non-convex, nonlinear, high-dimensional, multimodal, and continuous optimization problem. Previous methods simplify the problem by guessing the values for some variables and computing only the remaining ones. As a result, unavoidable approximations errors are introduced. In this paper, we describe the first method in the literature to solve the full NURBS curve reconstruction problem in all its generality. Our method is based on a combination of two techniques: an immunological approach to perform data parameterization, breakpoint placement, and weight calculation, and least squares minimization to compute the control points. This procedure is repeated iteratively (until no further improvement is achieved) for higher accuracy. The method has been applied to reconstruct some outline curves from MRI brain images with satisfactory results. Comparative work shows that our method outperforms the previous related approaches in the literature for all instances in our benchmark.
机译:从数据点重建曲线是高级医学成像技术(例如计算机断层扫描(CT)和磁共振成像(MRI))的重要问题。为此目的,最强大的拟合功能是NURBS(非均匀有理B样条)。使用NURBS解决一般重建问题需要计算问题的所有自由变量(数据参数,断点,控制点及其权重)。这导致非常困难的非凸,非线性,高维,多峰和连续优化问题。先前的方法通过猜测某些变量的值并仅计算其余变量来简化问题。结果,引入了不可避免的近似误差。在本文中,我们描述了文献中解决第一个方法的所有一般性问题的完整NURBS曲线重建问题。我们的方法基于两种技术的组合:一种用于执行数据参数化,断点放置和权重计算的免疫方法,以及用于计算控制点的最小二乘最小化。重复此过程(直到没有进一步的改进),以提高准确性。该方法已被用于从MRI脑图像中重建一些轮廓曲线,并获得令人满意的结果。比较工作表明,对于我们基准测试中的所有实例,我们的方法均优于文献中先前的相关方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号