首页> 外文期刊>IEE Proceedings. Part K, Vision, image and signal processing >Structurally enhanced latent semantic analysis for video object retrieval
【24h】

Structurally enhanced latent semantic analysis for video object retrieval

机译:用于视频对象检索的结构增强的潜在语义分析

获取原文
获取原文并翻译 | 示例

摘要

The work presented in this paper aims at reducing the semantic gap between low level video features and semantic video contents. The proposed method for finding associations between segmented frame region characteristics relies on the strength of latent semantic analysis (LSA). Previous work, using colour histograms and Gabor features, have rapidly shown the potential of this approach but also uncovered some of its limitations. The use of structural information is necessary, yet rarely employed for such a task. This paper addresses two important issues: the first is to verify that using structural information does indeed improve information retrieval performances, while the second concerns the manner in which this additional information is integrated within the framework. Here, two methods are proposed using the structural information contained in object parts' topological arrangement. The first adds structural constraints indirectly to the LSA during the preprocessing of the video, while the other includes the structure directly within the LSA. Finally, retrieval results demonstrate that when the structure is added directly to the LSA the performance gain of combining visual (low level) and structural information is convincing.
机译:本文提出的工作旨在减少低级视频功能和语义视频内容之间的语义鸿沟。所提出的用于寻找分段帧区域特征之间的关联的方法依赖于潜在语义分析(LSA)的强度。先前使用颜色直方图和Gabor功能的工作迅速显示了这种方法的潜力,但也发现了它的一些局限性。结构信息的使用是必要的,但很少用于此类任务。本文讨论了两个重要问题:第一个是验证使用结构信息确实可以提高信息检索性能,而第二个问题是在框架内集成这些附加信息的方式。这里,提出了两种方法,它们使用对象部分的拓扑结构中包含的结构信息。第一个在视频的预处理过程中间接向LSA添加结构约束,而另一个则直接在LSA内部包含结构约束。最后,检索结果表明,当将结构直接添加到LSA时,结合视觉(低级)和结构信息的性能令人信服。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号