首页> 外文期刊>IEE Proceedings. Part K, Vision, image and signal processing >Robust fabric defect detection and classification using multiple adaptive wavelets
【24h】

Robust fabric defect detection and classification using multiple adaptive wavelets

机译:使用多个自适应小波进行可靠的织物缺陷检测和分类

获取原文
获取原文并翻译 | 示例

摘要

The wavelet transform has been widely used for defect detection and classification in fabric images. The detection and classification performance of the wavelet transform approach is closely related to the selection of the wavelet. Instead of predetermining a wavelet, a method of designing a wavelet adapting to the detection or classification of the fabric defects has been developed. For further improvement of the performance, this paper extends the adaptive wavelet-based methodology from the use of a single adaptive wavelet to multiple adaptive wavelets. For each class of fabric defect, a defect-specific adaptive wavelet was designed to enhance the defect region at one channel of the wavelet transform, where the defect region can be detected by using a simple threshold classifier. Corresponding to the multiple defect-specific adaptive wavelets, the multiscale edge responses to defect regions have been shown to be more efficient in characterising the defects, which leads to a new approach to the classification of defects. In comparison with the single adaptive wavelet approach, the use of multiple adaptive wavelets yields better performance on defect detection and classification, especially for defects that are poorly detected by the single adaptive wavelet approach. The proposed method using multiple adaptive wavelets has been evaluated on the inspection of 56 images containing eight classes of fabric defects, and 64 images without defects, where 98.2percent detection rate and 1.5percent false alarm rate were achieved in defect detection, and 97.5percent classification accuracy was achieved in defect classification.
机译:小波变换已被广泛用于织物图像的缺陷检测和分类。小波变换方法的检测和分类性能与小波的选择密切相关。代替预定小波,已经开发了一种设计小波以适应织物缺陷的检测或分类的方法。为了进一步提高性能,本文将基于自适应小波的方法从单个自适应小波的使用扩展到多个自适应小波。对于每种类型的织物缺陷,设计了特定于缺陷的自适应小波,以增强小波变换的一个通道处的缺陷区域,其中可以使用简单的阈值分类器来检测缺陷区域。对应于多个特定缺陷的自适应小波,已显示出对缺陷区域的多尺度边缘响应在表征缺陷方面更有效,这导致了一种新的缺陷分类方法。与单一自适应小波方法相比,使用多个自适应小波在缺陷检测和分类方面具有更好的性能,尤其是对于那些单个自适应小波方法检测不到的缺陷。通过对包含八类织物缺陷的56张图像和没有缺陷的64张图像进行检查,评估了所提出的使用多个自适应小波的方法,其中缺陷检测分别达到98.2%和1.5%的误报率,以及97.5%的分类率在缺陷分类中达到了准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号