首页> 外文期刊>IEE Proceedings. Part K, Vision, image and signal processing >Efficient nearly-optimal motion and structure from images via analysis of dimensional reduction: application to safety checking system
【24h】

Efficient nearly-optimal motion and structure from images via analysis of dimensional reduction: application to safety checking system

机译:通过降维分析有效地实现图像的最佳运动和结构:在安全检查系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

In computing 3D motion and structure from image correspondences, often called the structure from motion (SFM) problem, dimensions of the used variable set are very large because it contains both motion and structure parameters. As a result, to solve the problem incurs much computational burden. However, in on-line applications of the SFM problem, computational efficiency needs to be stressed as some accuracy of the solutions is sacrificed. In this respect, various dimensional reduction methods are often introduced to improve computational efficiency and this usually leads to various reduced-form SFM problems. The so-obtained reduced-form SFM problems depend on fewer unknowns than the original SFM problem, thus allowing, in principle, for a less computationally intensive estimation, albeit potentially sacrificing accuracy of the results. It is thus interesting to study how much accuracy is lost. This is done by analytically proving results on equivalence or proximity of solutions for some example cases of the so-obtained reduced-form SFM problems. And then, based on the analysis, the author also proposes how to reduce the loss of accuracy in the reduced-form SFM problems (in the meaning of adjusting those reduced-form SFM problems to better approximate the original optimal SFM problem; that is, an optimal SFM problem that does not use any dimensional reduction methods). Experimental results are given to show the effect in practice. Finally, as an example application, a safety checking system using vision is considered.
机译:在根据图像对应关系计算3D运动和结构(通常称为运动结构(SFM)问题)时,所使用的变量集的尺寸非常大,因为它既包含运动参数又包含结构参数。结果,解决该问题引起很大的计算负担。但是,在SFM问题的在线应用中,由于牺牲了一些解决方案的准确性,因此需要强调计算效率。在这方面,经常引入各种降维方法以提高计算效率,这通常会导致各种简化形式的SFM问题。如此获得的简化形式的SFM问题比原始SFM问题所依赖的未知数更少,因此,尽管有可能牺牲结果的准确性,但原则上允许进行较少的计算密集型估计。因此,研究丢失多少精度是很有趣的。这是通过对如此获得的简化形式的SFM问题的某些示例情况的解决方案的等效性或接近性进行分析证明的结果来完成的。然后,在分析的基础上,作者还提出了如何减少精简SFM问题的准确性损失(在调整精简SFM问题以更好地逼近原始最优SFM问题的意义上,即不使用任何降维方法的最佳SFM问题)。实验结果表明了实际效果。最后,作为一个示例应用程序,考虑了使用视觉的安全检查系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号