首页> 外文期刊>IEE Proceedings. Part K >Robust rotation-invariant texture classification: wavelet. Gabor filter and GMRF based schemes
【24h】

Robust rotation-invariant texture classification: wavelet. Gabor filter and GMRF based schemes

机译:鲁棒的旋转不变纹理分类:小波。基于Gabor滤波器和GMRF的方案

获取原文
获取原文并翻译 | 示例

摘要

Three novel feature extraction schemes for texture classification are proposed. The schemes employ the wavelet transform, a circularly symmetric Gabor filter or a Gaussian Markov random field with a circular neighbour set to achieve rotation-invariant texture classification. The schemes are shown to give a high level of classification accuracy compared to most existing schemes, using both fewer features (four) and a smaller area of analysis (16 × 16). Furthermore, unlike most existing schemes, the proposed schemes are shown to be rotation invariant and demonstrate a high level of robustness to noise. The performances of the three schemes are compared, indicating that the wavelet-based approach is the most accurate, exhibits the best noise performance and has the lowest computational complexity.
机译:提出了三种新颖的纹理分类特征提取方案。该方案采用小波变换,圆对称Gabor滤波器或具有圆形邻居集的高斯马尔可夫随机场来实现旋转不变纹理分类。与大多数现有方案相比,该方案使用较少的特征(四个)和较小的分析区域(16×16),显示出较高的分类精度。此外,与大多数现有方案不同,所提出的方案显示为旋转不变的,并表现出高水平的抗噪声能力。比较了三种方案的性能,表明基于小波的方法最准确,表现出最佳的噪声性能且具有最低的计算复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号