首页> 外文期刊>IEE Proceedings. Part K >Subsyllable-based discriminative segmental Bayesian network for Mandarin speech keyword spotting
【24h】

Subsyllable-based discriminative segmental Bayesian network for Mandarin speech keyword spotting

机译:基于亚音节的区分性贝叶斯网络对普通话语音关键词的识别

获取原文
获取原文并翻译 | 示例

摘要

A continuous Mandarin speech keyword spotting system based on context- dependent subsyllables is presented. In this vocabulary-independent system, users can define their own keywords and most frequently occurring non-keywords without retraining the system. A set of l76 monosyllables and 483 balanced words or sentences are used to extract the context-dependent subsyllables (i.e. initials or finals in Mandarin speech), for training. Each subsyllable is represented by a proposed discriminative segmental Bayesian network (DSBN). In the training process, the generalised probabilistic descent (GPD) algorithm is used for discriminative training. The most frequently occurring non-keywords are divided into keyword predecessors and successors. Non-keyword garbage models for keyword predecessors, keyword successors and extraneous speech are separately constructed. In the recognition process, a final part preprocessor is used to screen out unreasonable hypotheses in order to reduce the recognition time. Using a test set of 750 conversational speech utterances from 20 speakers (ten males and ten females), word spotting rates of 92.0/100 when the vocabulary word was embedded in unconstrained extraneous speech, were obtained for a user-defined 20 keyword vocabulary.
机译:提出了一种基于上下文依赖的子音节的连续普通话语音关键词识别系统。在这个独立于词汇的系统中,用户可以定义自己的关键字和最常出现的非关键字,而无需重新训练系统。一组176个单音节和483个平衡的单词或句子用于提取上下文相关的子音节(即普通话的首字母或结尾),以进行训练。每个子音节都由提议的区分性贝叶斯网络(DSBN)表示。在训练过程中,广义概率下降(GPD)算法用于判别训练。最频繁出现的非关键字分为关键字前身和后继。分别为关键字的前任,关键字的后继和无关的语音创建非关​​键字垃圾模型。在识别过程中,最后一部分预处理器用于筛选不合理的假设,以减少识别时间。使用来自20个说话者(十个男性和十个女性)的750种会话语音的测试集,对于用户定义的20个关键字词汇,将词汇词嵌入不受限制的无关语音中时,单词发现率为92.0 / 100。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号