首页> 外文期刊>IEE proceedings. Part G >Piecewise linear approximation applied to nonlinear function of a neural network
【24h】

Piecewise linear approximation applied to nonlinear function of a neural network

机译:分段线性逼近应用于神经网络的非线性函数

获取原文
获取原文并翻译 | 示例

摘要

An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses a simple digital gate design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. The comparison of this technique with two other sigmoidal approximation techniques for digital circuits is presented and the results show that the fast and compact digital circuit proposed produces the closest approximation to the sigmoid function, The hardware implementation of PLAN has been verified by a VHDL simulation with Mentor Graphics running under the UNIX operating system.
机译:提出了一种有效的非线性函数的分段线性逼近方法。这使用简单的数字门设计来执行从X到Y的直接转换,其中X是输入,Y是近似的S形输出。然后在人工神经网络的输出中使用该PLAN来执行非线性逼近。将该技术与其他两种用于数字电路的S形近似技术进行了比较,结果表明,所提出的快速紧凑的数字电路产生了与S形函数最接近的近似。PLAN的硬件实现已通过VHDL仿真进行了验证,包括Mentor Graphics在UNIX操作系统下运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号