...
首页> 外文期刊>Human Molecular Genetics >Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice
【24h】

Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice

机译:突变型雪旺细胞中具有Dismutase功能的SOD1突变体积累对正常或转基因ALS模型小鼠无害

获取原文

摘要

Mutant superoxide dismutase 1 (SOD1) action within non-neuronal cells is implicated in damage to spinal motor neurons in a genetic form of amyotrophic lateral sclerosis (ALS). Central nervous system glial cells such as astrocytes and microglia drive progression in transgenic mutant SOD1 mice, however, the role of myelinating glia remains unclear. Specifically, peripheral myelinating glial cells are likely candidates for mediating degeneration of distal synapses and axons of motor neurons in ALS. Here, we examine the potential contribution of peripheral axon ensheathing Schwann cells to ALS by constructing transgenic mice expressing dismutase active mutant SOD1G93A driven by the myelin protein zero (P0) promoter. In this model, mutant SOD1 accumulation in Schwann cells was comparable to levels in mice ubiquitously expressing a SOD1G93A transgene that become paralysed. Growth, locomotion and survival of these P0-SOD1G93A mice were indistinguishable from normal animals. There was no evidence for spinal motor neuron loss, distal axonal degeneration and p75 neurotrophin receptor (p75NTR) upregulation in the periphery of P0-SOD1G93A mice, unlike transgenic SOD1G93A mice with presymptomatic p75NTR induction and death-signalling. Furthermore, Schwann cells were resistant to mutant SOD1 aggregation in vivo and in transfected primary cultures. Increasing mutant SOD1 synthesis in Schwann cells by cross-breeding transgenic P0-SOD1G93A and SOD1G93A mice did not affect disease onset or survival. We conclude that dismutase-competent mutant SOD1 accumulation within Schwann cells is not pathological to spinal motor neurons or deleterious to disease course in transgenic ALS model mice, in contrast to astrocytes and microglia.
机译:非神经元细胞内的突变型超氧化物歧化酶1(SOD1)作用与肌萎缩性侧索硬化症(ALS)的遗传形式对脊髓运动神经元的损害有关。中枢神经系统神经胶质细胞(如星形胶质细胞和小胶质细胞)在转基因突变型SOD1小鼠中驱动进展,但是,髓鞘神经胶质的作用仍不清楚。具体而言,外周有髓神经胶质细胞可能是介导ALS中远端突触和运动神经元轴突变性的候选者。在这里,我们通过构建表达由髓鞘蛋白零(P0)启动子驱动的歧化酶活性突变体SOD1 G93A 的转基因小鼠,研究了外周鞘轴突鞘雪旺细胞对ALS的潜在贡献。在此模型中,突变体SOD1在雪旺细胞中的积累与普遍表达瘫痪的SOD1 G93A 转基因小鼠的水平相当。这些P0-SOD1 G93A 小鼠的生长,运动和存活与正常动物没有区别。与转基因SOD1不同,没有证据表明P0-SOD1 G93A 小鼠的周围有脊髓运动神经元丢失,远端轴突变性和p75神经营养蛋白受体(p75 NTR )上调。对具有症状前p75 NTR 诱导和死亡信号转导的sup> G93A 小鼠。此外,Schwann细胞在体内和转染的原代培养物中均对突变型SOD1聚集具有抗性。通过杂交育种转基因P0-SOD1 G93A 和SOD1 G93A 小鼠增加雪旺细胞中突变SOD1的合成不会影响疾病的发作或存活。我们得出的结论是,与星形胶质细胞和小胶质细胞相比,在Schwann细胞内具有Dismutase适应能力的突变SOD1积累对脊髓运动神经元无病理性或对疾病进程无害。

著录项

  • 来源
    《Human Molecular Genetics 》 |2010年第5期| p.815-824| 共10页
  • 作者单位

    MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics,|Howard Florey Institute and Centre for Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia;

    MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics,;

    MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics,;

  • 收录信息
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号