首页> 外文期刊>Human-Machine Systems, IEEE Transactions on >Using Smart-Phones and Floor Plans for Indoor Location Tracking
【24h】

Using Smart-Phones and Floor Plans for Indoor Location Tracking

机译:使用智能手机和平面图进行室内位置跟踪

获取原文
获取原文并翻译 | 示例

摘要

We implement pedestrian dead reckoning (PDR) for indoor localization. With a waist-mounted PDR based system on a smart-phone, we estimate the user's step length that utilizes the height change of the waist based on the Pythagorean Theorem. We propose a zero velocity update (ZUPT) method to address sensor drift error: Simple harmonic motion and a low-pass filtering mechanism combined with the analysis of gait characteristics. This method does not require training to develop the step length model. Exploiting the geometric similarity between the user trajectory and the floor map, our map matching algorithm includes three different filters to calibrate the direction errors from the gyro using building floor plans. A sliding-window-based algorithm detects corners. The system achieved 98% accuracy in estimating user walking distance with a waist-mounted phone and 97% accuracy when the phone is in the user's pocket. ZUPT improves sensor drift error (the accuracy drops from 98% to 84% without ZUPT) using 8 Hz as the cut-off frequency to filter out sensor noise. Corner length impacted the corner detection algorithm. In our experiments, the overall location error is about 0.48 meter.
机译:我们对室内定位实施行人航位推算(PDR)。使用智能手机上基于腰部安装的PDR的系统,我们根据勾股定理来估计利用腰部高度变化的用户步长。我们提出了一种零速度更新(ZUPT)方法来解决传感器的漂移误差:简单的谐波运动和低通滤波机制,结合步态特征分析。此方法不需要培训即可开发步长模型。利用用户轨迹和楼层地图之间的几何相似性,我们的地图匹配算法包括三个不同的过滤器,可使用建筑物平面图来校准来自陀螺仪的方向误差。基于滑动窗口的算法检测角点。该系统使用腰挂式电话估算用户的步行距离时达到98%的精度,而当电话放在用户的口袋中时,则达到97%的精度。 ZUPT使用8 Hz作为截止频率来滤除传感器噪声,从而改善了传感器漂移误差(无ZUPT时,精度从98%降至84%)。拐角长度影响了拐角检测算法。在我们的实验中,整体位置误差约为0.48米。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号