首页> 外文期刊>Human-Machine Systems, IEEE Transactions on >Exploring Latent Preferences for Context-Aware Personalized Recommendation Systems
【24h】

Exploring Latent Preferences for Context-Aware Personalized Recommendation Systems

机译:探索上下文感知的个性化推荐系统的潜在首选项

获取原文
获取原文并翻译 | 示例

摘要

Context-aware recommendations offer the potential of exploiting social contents and utilize related tags and rating information to personalize the search for content considering a given context. Recommendation systems tackle the problem of trying to identify relevant resources from the vast number of choices available online. In this study, we propose a new recommendation model that personalizes recommendations and improves the user experience by analyzing the context when a user wishes to access multimedia content. We conducted empirical analysis on a dataset from last.fm to demonstrate the use of latent preferences for ranking items under a given context. Additionally, we use an optimization function to maximize the mean average precision measure of the resulted recommendation. Experimental results show a potential improvement to the quality of the recommendation in terms of accuracy when compared with state-of-the-art algorithms.
机译:情境感知建议提供了利用社交内容并利用相关标签和评级信息来个性化考虑给定情境的内容搜索的潜力。推荐系统解决了试图从大量在线可用选择中识别相关资源的问题。在这项研究中,我们提出了一种新的推荐模型,该模型可以个性化推荐并通过分析用户希望访问多媒体内容时的上下文来改善用户体验。我们对来自last.fm的数据集进行了实证分析,以证明在给定背景下使用潜在偏好对项目进行排名。此外,我们使用优化函数来最大化结果推荐的平均平均精度。实验结果表明,与最新算法相比,该建议书的质量在准确性方面有潜在的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号