首页> 外文期刊>ACM transactions on intelligent systems >Mining Mobile User Preferences for Personalized Context-Aware Recommendation
【24h】

Mining Mobile User Preferences for Personalized Context-Aware Recommendation

机译:挖掘移动用户首选项以实现个性化上下文感知推荐

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or context logs for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.
机译:移动设备及其感测功能的最新发展已使人们能够通过设备日志收集丰富的上下文信息和移动设备使用记录。这些内容丰富的日志为在不同的上下文中挖掘移动用户的个人喜好开辟了一个场所,从而能够开发个性化的上下文感知推荐和其他相关服务,例如移动在线广告。在本文中,我们说明了如何从内容丰富的设备日志(或简称为上下文日志)中提取个人上下文感知的首选项,并利用这些已识别的首选项来构建个性化的上下文感知推荐器系统。这方面的一个关键挑战是每个用户的上下文日志可能没有足够的数据来挖掘他或她的上下文感知偏好。因此,我们建议首先从许多用户的上下文日志中学习常见的上下文感知首选项。然后,每个用户的偏好可以表示为这些常见的上下文感知偏好的分布。具体来说,我们基于两种不同的假设(即上下文无关和上下文依赖的假设)开发了两种方法来挖掘常见的上下文感知偏好,这两种方法可以适合不同的应用场景。最后,在现实世界的数据集上进行的大量实验表明,在挖掘针对移动用户的个人上下文感知的偏好方面,这两种方法都是有效的并且优于基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号