首页> 外文期刊>Human-Machine Systems, IEEE Transactions on >Situation Awareness Inferred From Posture Transition and Location: Derived From Smartphone and Smart home Sensors
【24h】

Situation Awareness Inferred From Posture Transition and Location: Derived From Smartphone and Smart home Sensors

机译:从姿势过渡和位置推断出的情境意识:来自智能手机和智能家居传感器

获取原文
获取原文并翻译 | 示例

摘要

Situation awareness may be inferred from user context such as body posture transition and location data. Smartphones and smart homes incorporate sensors that can record this information without significant inconvenience to the user. Algorithms were developed to classify activity postures to infer current situations; and to measure user's physical location, in order to provide context that assists such interpretation. Location was detected using a subarea-mapping algorithm; activity classification was performed using a hierarchical algorithm with backward reasoning; and falls were detected using fused multiple contexts (current posture, posture transition, location, and heart rate) based on two models: “certain fall” and “possible fall.” The approaches were evaluated on nine volunteers using a smartphone, which provided accelerometer and orientation data, and a radio frequency identification network deployed at an indoor environment. Experimental results illustrated falls detection sensitivity of 94.7% and specificity of 85.7%. By providing appropriate context the robustness of situation recognition algorithms can be enhanced.
机译:可以从用户上下文(例如身体姿势转换和位置数据)推断出情况意识。智能手机和智能家居中集成了传感器,可以记录这些信息而不会给用户带来很大的不便。开发了对活动姿势进行分类以推断当前情况的算法;并测量用户的实际位置,以提供有助于这种解释的环境。使用分区映射算法检测位置;活动分类使用具有反向推理的层次算法进行;根据两种模型(“特定跌倒”和“可能跌倒”),使用融合的多种环境(当前姿势,姿势转变,位置和心率)检测跌倒和跌倒。使用智能手机(提供了加速度计和方向数据)以及部署在室内环境中的射频识别网络对9名志愿者进行了评估。实验结果表明,跌倒检测灵敏度为94.7%,特异性为85.7%。通过提供适当的上下文,可以增强情况识别算法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号